1 / 18

Related Rates

Related Rates. What are related rates?. Related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. Because these problems involve rates, they must be differentiated with respect to time.

kimama
Download Presentation

Related Rates

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Related Rates

  2. What are related rates? Related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. Because these problems involve rates, they must be differentiated with respect to time.

  3. Quick Review on Implicit Differentiation

  4. Types of Problems • We will determine how to solve problems involving: • Circles • Spheres • Triangles • Cones • Cylinders

  5. General Procedure The most common way to approach related rates problems is the following: 1. Identify the known variables, including rates of change and the rate of change that is to be found. **Drawing a picture or representation of the problem can help to keep everything in order** 2. Construct an equation relating the quantities whose rates of change are known to the quantity whose rate of change is to be found. 3. Differentiate both sides of the equation with respect to time. (Often, the chain rule is employed at this step.) 4. Substitute the known rates of change and the known quantities into the equation. Solve for the wanted rate of change. **Errors in this procedure are often caused by plugging in the known values for the variables before (rather than after) finding the derivative with respect to time. Doing so will yield an incorrect result.**

  6. Example 1 Olympic swimmer Mr. Spitz leaps into a pool, causing ripples in the form of concentric circles. The radius is increasing at a constant of 4 feet per second. When the radius is 8 feet, at what rate is the total area of disturbed water changing (assuming the splash is negligible)? The variables r and A are related by A=πr2. The rate of change of the radius r is dr/dt=4 Equation: A=πr2 Given rate: dr/dt=4 Find: dA/dt when r=8

  7. Example 2 Mr. Spitz, the circus clown, is traveling with the Barnum and Bailey circus, is told to inflate a balloon. If the volume increases at a constant rate of 50 cm3/sec, at what rate is the radius increasing when the volume is 972π cm3? Equation: V= 4/3πr3 Given: dV/dt=50 V = 972π Find dr/dt

  8. Example 3a Major Spitz is flying a rescue mission to extract General Earl during a battle in WWI. He flies his plane at 200 mph at an altitude of 6 miles. What is the rate of change of the shortest distance between them when the horizontal distance is 8 miles? dx/dt = -200 dz/dt = ?? 6 mi 8 mi

  9. Example 3b General Earl is watching for his rescue plane with binoculars. Major Spitz slows down to 100 mph and descends to 3 miles to spot General Earl. What is the rate of change of the angle the General is watching from when the horizontal distance is 4 miles?

  10. Example 4 Mr. Spitz was best friends with Augustus Caesar. While studying by candlelight, Spitz was testing his speed with implicit differentiation and timed himself with an hourglass, the most advanced technology at the time. He knows that the sand initially falls forming a cone, whose radius is twice its height. The hourglass fills at a constant rate of 3 cm3/min. When the volume is 36π cm3, what is the rate of change of the height?

  11. Note: When V = 36π, h = 3

  12. Example 5 Mr. Spitz is filling his cylindrical water jug with some “good H2O” before he runs the iron man triathlon. The radius is 4 inches; as Mr. Spitz fills the jug, the height is changing at a rate of .5 in/sec. What rate is the volume changing at?

  13. That’s All Folks!

More Related