slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
NADCA - Die Materials Committee Meeting PowerPoint Presentation
Download Presentation
NADCA - Die Materials Committee Meeting

Loading in 2 Seconds...

play fullscreen
1 / 41

NADCA - Die Materials Committee Meeting - PowerPoint PPT Presentation


  • 177 Views
  • Uploaded on

NADCA - Die Materials Committee Meeting. DIE MATERIALS FOR CRITICAL APPLICATIONS. AND INCREASED PRODUCTION RATES. John F. Wallace David Schwam Quanyou Zhou Case Western Reserve University. Cleveland, OH - November 14, 2001. OUTLINE. 1. Shorter cycles - cooling curves in the biscuit.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'NADCA - Die Materials Committee Meeting' - kim-sparks


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

NADCA - Die Materials Committee Meeting

DIE MATERIALS FOR CRITICAL APPLICATIONS

AND INCREASED PRODUCTION RATES

John F. Wallace

David Schwam

Quanyou ZhouCase Western Reserve University

Cleveland, OH - November 14, 2001

slide2

OUTLINE

1. Shorter cycles - cooling curves in the biscuit.

2. Evaluation of non-ferrous alloys.

3. Results of recently tested die steels.

slide3

INCREASING PRODUCTIVITY WITH SHORTER CYCLES

  • METHOD:
  • Utilize high thermal conductivity materials to extract heat faster from the large cross sections.

EXPERIMENTAL

  • Shot blocks made of H13, Brush Alloy 3 (CuBe-based),
  • Brush MoldMax (CuBe-base), Brush MoldMax XL (copper-base)
  • CMW Anviloy (W), ALLVAC 718 (Ni-base), Nibryl (NiBe).
  • Record cooling curve of the biscuit.
  • Determine “Die Open” time for different shot block materials.
slide11

TH13-Open=28.6(s)

TAnvilloy 1150-Open=23.5(s)

TMold XL-Open=20.0(s)

TCuBe-3C-Open=18.2(s)

TMold Ma-Open=18.0(s)

slide12

H13

Anvilloy

3C CuBe

slide13

Effect of Shot Block Material on Cooling Time of Biscuit

Die Open” time (@950oF)for Brush Alloy 3C is 18.2 sec.

vs. 28.6 sec. for H13. This is a 36% reduction in cycle time.

slide14

LIST OF NON-FERROUS CANDIDATE MATERIALS

Material

C

W

Mo

Fe

Ni

Ti

Zr

Cu

Be

Cr

Nb

Sn

CMW-

90.00

4.00

2.00

4.00

Anviloy1150

Kulite-Kuldie

90.00

4.00

2.00

4.00

Allvac 718L

0.01

3.10

18.20

53.80

0.93

17.90

5.06

CSM-PM Mo

100

Brush-QMAX

0.20

Bal.

2.00

Copper Beryllium

Brush-Nybril 360

Bal.

0.50

2.00

Nickel Beryllium

Brush-Nybril-FX1

Bal.

0.50

12.50

1.00

Nickel Beryllium

Brush NBCX

Bal.

0.5

12.5

1.2

Nickel Beryllium

Brush M220C

0.4

Bal.

2.00

Nickel Beryllium

Brush ToughMet2

9.00

Bal.

6.00

Brush ToughMet3

15.00

Bal.

8.00

slide15

TOTAL CRACK AREA AFTER 15,000 THERMAL FATIGUE CYCLES (1"x1"x7")

600

1"X1"X7", WC7

)

2

m

500

6

400

300

Total Crack Area (x 10

Brush Wrought Nybril 360/35Rc

Brush Wrought Nybril FX/44Rc

200

Brush Cast Nybril 360-2/ 35Rc

Brush Cast Nybril 360-1/34Rc

Brush Cast Nybril FX/49Rc

CMW Anviloy 1150/37Rc

Bohler W303/Oi/45Rc

Brush QMAX/24Rc

CSM PM Mo/20Rc

Kulite Kuldie/33Rc

Bohler W100/44Rc

P.G. H13/Oil/49Rc

Kind RPU1/48Rc

Kind TQ1/48Rc

100

0

Test Materials

slide16

AVERAGE MAXIMUM CRACK LENGTH AFTER 15,000 THERMAL FATIGUE CYCLES (1"x1"x7")

50

1"X1"X7", WC7

m)

45

m

40

35

30

25

Average Max Crack Length (x100

20

Allvac IN718/46Rc (Pitting Depth)

Brush Wrought Nybril 360/35Rc

Brush Wrought Nybril FX/44Rc

Brush Cast Nybril 360-2/ 35Rc

Brush Cast Nybril 360-1/34Rc

Brush Cast Nybril FX/49Rc

15

CMW Anviloy 1150/37Rc

Bohler W303/Oi/45Rc

P.G. H13/Oil/49Rc

Brush QMAX/24Rc

Kulite Kuldie/33Rc

CSM PM Mo/20Rc

Bohler W100/44Rc

Kind RPU1/48Rc

Kind TQ1/48Rc

10

5

0

Test Materials

slide19

Soldering Damage at the Corners of Cu-Ni-Sn Thermal Fatigue Specimens

0.5”

ToughMet 2

ToughMet 2

ToughMet 3

ToughMet 2

slide20

Thermal Fatigue Damage in NBCX-1 and M220C-1

Soldering

Thermal Fatigue Cracks

Thermal Fatigue Cracks

Corner

0.5”

M220C-1

NBCX-1

slide21

CORNER DAMAGE IN ALLVAC A-286

(Iron-based w/ca.25% Ni)

slide22

CermeTi - Titanium Metal Matrix Composite

Composition: matrix Ti-6Al-4V + 10wt% TiC particles.

Manufacturing: by PM at Dynamet, Burlington MA.

Main application: Liner for shot sleeves.

Advantages: Low thermal conductivity

(5.9 W/mK that is ca. 25% of H13)

Good resistance to soldering and dissolving

in molten Al

Good wear resistance (@40HRC)

slide23

AVERAGE MAXIMUM CRACK LENGTH OF CermeTi-C-10 vs. H13

80

70

60

50

Average Max Crack Length (x100mm)

40

CermeTi-C-10

H13/oil quench/50HRC

30

20

10

1"x1"x7", wC7

0

0

2500

5000

7500

10000

12500

15000

Thermal Cycles

slide25

TOTAL CRACK AREA OF ALLVAC WH38 AND H13

650

2"X2"X7", WC7

600

WH38

H13

550

500

450

400

WH38 / 50HRC

350

Total Crack Area (x106mm2)

300

250

200

H13 / OIL / 51HRC

150

100

50

0

5000

7500

10000

12500

15000

Thermal Cycles

slide26

AVERAGE MAXIMUM CRACK LENGTH OF ALLVAC WH38 AND H13

60

2"X2"X7", WC7

55

HW38

50

H13

45

40

WH38 / 50HRC

Average Max Crack Length (x100mm)

35

30

25

H13/ OIL/ 51HRC

20

15

10

5

0

5000

7500

10000

12500

15000

Thermal Cycles

slide30

TOTAL CRACK AREA OF SCHMIDT H11 AND H13

200

2"X2"X7", WC7

H13

SCHMIDT/H11-ESR

150

SCHMIDT/H11-ESR/45HRC

Total Crack Area (x 106mm2)

100

50

H13 / OIL / 51HRC

0

5000

7500

10000

12500

15000

Thermal Cycles

slide31

AVERAGE MAXIMUM CRACK LENGTH OF SCHMIDT H11 AND P.G. H13

20

H13

SCHMIDT/H11-ESR

15

SCHMIDT/H11-ESR/45HRC

Average Max Crack Length (x100mm)

10

H13 / OIL/ 51HRC

5

2"X2"X7",WC7

0

5000

7500

10000

12500

15000

Thermal Cycles

slide32

TOTAL CRACK AREA OF BOHLER 302 AND P.G. H13

200

2"X2"X7", WC7

H13

BOHLER W302

150

Total Crack Area (x106mm2)

W302/47HRC

100

50

H13 / OIL / 51HRC

0

5000

7500

10000

12500

15000

Thermal Cycles

slide33

AVERAGE MAXIMUM CRACK LENGTH OF BOHLER W302 AND P.G. H13

20

2"X2"X7", WC7

15

Average Max Crack Length (x100mm)

W302/47HRC

10

5

H13 / OIL/ 51HRC

0

5000

7500

10000

12500

15000

Thermal Cycles

slide34

TOTAL CRACK AREA OF THYSSEN 2344 AND P.G. H13

200

2"X2"X7", WC7

150

Total Crack Area (x106mm2)

H13 / OIL / 51HRC

100

50

THYSSEN 2344/45HRC

0

5000

7500

10000

12500

15000

Thermal Cycles

slide35

AVERAGE MAXIMUM CRACK LENGTH OF THYSSEN 2344(H13) AND P.G. H13

20

2"X2"X7", WC7

H13

2344

15

H13 / OIL/ 51HRC

Average Max Crack Length (x100mm)

10

5

Thyssen 2344/47HRC

0

5000

7500

10000

12500

15000

Thermal Cycles

slide36

TOTAL CRACK AREA OF KIND H11 AND P.G. H13

300

2"X2"X7", WC7

250

200

KIND H11/47HRC

Total Crack Area (x106mm2)

150

100

50

H13 / OIL / 51HRC

0

5000

7500

10000

12500

15000

Thermal Cycles

slide37

AVERAGE MAXIMUM CRACK LENGTH OF KIND H11 AND P.G. H13

25

2"X2"X7", WC7

20

KIND H11/47HRC

15

Average Max Crack Length (x100mm)

10

5

H13 / OIL/ 51HRC

0

5000

7500

10000

12500

15000

Thermal Cycles

slide39

AVERAGE MAXIMUM CRACK LENGTH OF KDA1 AND H13

18

16

m)

KDA1

H13

m

14

H13

12

10

Average Max Crack Length (x100

8

6

KDA1

4

2

2"X2"X7", WC7

0

5000

7500

10000

12500

15000

Thermal Cycles