120 likes | 136 Views
Explore innovative absorber design concepts incorporating grooves, slots, and distributed systems for synchrotron radiation sources. Enhance stress reduction, increase heat dissipation capacity, and optimize performance. Learn about materials, expansion limits, and thermal conductivity.
E N D
Absorber Design for Synchrotron Radiation Sources S.Hermle, D.Einfeld, E.Huttel (FZK); G.Heidenreich(PSI) PAC99 S.Sharma,E.Rotela,A.Barcikowsk (APS) MEDSI00 L.Zhang, J.C.Biasci, B.Plan (ESRF) MEDSI02
ANKA Absorber Design Storage ring: Lumped Absorber Distributed Absorber Front Ends. Mask Shutter
Basic Absorber 10000 W / K m2 40 W / mm Cu: Conductivity: 380 W / Km Young module 120 GPa Expansion 0.000017 1 / K
At the limit, what to do? Decline the Absorber 0.95 m > 1.7 m eff. Increase source distance: 1.3 m > 1.7 m Increase water flow Increase boundary surface Special: grooves and slots
Basic Plate and Plate with Grooves (APS) 40 W / mm Tmax: 150 Tbound: 95 Tmax: 195 Tbound: 100
ANKA,SLS,..SOLEIL (Heidenreich PSI) Tmax: 132 Tbound: 80 Tmax: 132 Tbound: 90 Stress reduction by allowing expansion
Distributed Absorber Cu to LN316 bonded LN316 Al Extruded P: 5 W/mm Tmax: 75 °C Tbound 40 °C P: 2 W/mm Tmax: 60 °C Tbound 40 °C P: 0.5 W/mm Tmax: 50 °C Tbound 30 °C
Front End SR Shutter (20 kW) P/l: 260 W / mm P/a: 6.5 W / mm2 A: 40 x 75 mm2 Tmax: 480 °C Tbound: 200 °C FMB ASP Shutter Absorber for reflected radiation
ESRF Concept Vertical Declination Horizontal Declination (ESRF)
ESRF Concept P/l: 260 W / mm P/a: 6.5 W / mm2 A: 40 x 75 mm2 Tmax: 340 °C Tbound: 100 °C P/l: 50 W / mm P/a: 25 W / mm2 A: 2 x 400 mm2 Tmax: 190 °C Tbound: 50 °C