1 / 41

Visual Object Recognition

Visual Object Recognition. Bastian Leibe & Computer Vision Laboratory ETH Zurich Chicago, 14.07.2008. Kristen Grauman Department of Computer Sciences University of Texas in Austin. Outline. Detection with Global Appearance & Sliding Windows

kiet
Download Presentation

Visual Object Recognition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Visual Object Recognition Bastian Leibe & Computer Vision Laboratory ETH Zurich Chicago, 14.07.2008 Kristen Grauman Department of Computer Sciences University of Texas in Austin

  2. Outline Detection with Global Appearance & Sliding Windows Local Invariant Features: Detection & Description Specific Object Recognition with Local Features ― Coffee Break ― Visual Words: Indexing, Bags of Words Categorization Matching Local Features Part-Based Models for Categorization Current Challenges and Research Directions 2 K. Grauman, B. Leibe

  3. Motivation • Global representations have major limitations • Instead, describe and match only local regions • Increased robustness to • Occlusions • Articulation • Intra-category variations K. Grauman, B. Leibe

  4. Approach 1. Find a set of distinctive key- points 2. Define a region around each keypoint A1 B3 3. Extract and normalize the region content A2 A3 B2 B1 Similarity measure 4. Compute a local descriptor from the normalized region N pixels e.g.color e.g.color 5. Match local descriptors N pixels K. Grauman, B. Leibe

  5. Requirements • Region extraction needs to be repeatable and precise • Translation, rotation, scale changes • (Limited out-of-plane (affine) transformations) • Lighting variations • We need a sufficient number of regions to cover the object • The regions should contain “interesting” structure K. Grauman, B. Leibe

  6. Many Existing Detectors Available • Hessian & Harris [Beaudet ‘78], [Harris ‘88] • Laplacian, DoG [Lindeberg ‘98], [Lowe 1999] • Harris-/Hessian-Laplace[Mikolajczyk & Schmid ‘01] • Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04] • EBR and IBR [Tuytelaars & Van Gool ‘04] • MSER[Matas ‘02] • Salient Regions [Kadir & Brady ‘01] • Others… K. Grauman, B. Leibe

  7. Keypoint Localization • Goals: • Repeatable detection • Precise localization • Interesting content  Look for two-dimensional signal changes K. Grauman, B. Leibe

  8. Hessian Detector [Beaudet78] • Hessian determinant Ixx Iyy Ixy Intuition: Search for strongderivatives in two orthogonal directions K. Grauman, B. Leibe

  9. Hessian Detector [Beaudet78] • Hessian determinant Ixx Iyy Ixy In Matlab: K. Grauman, B. Leibe

  10. Hessian Detector – Responses [Beaudet78] Effect: Responses mainly on corners and strongly textured areas.

  11. Hessian Detector – Responses [Beaudet78]

  12. Harris Detector [Harris88] • Second moment matrix(autocorrelation matrix) Intuition: Search for local neighborhoods where the image content has two main directions (eigenvectors). K. Grauman, B. Leibe

  13. Ix Iy Harris Detector [Harris88] • Second moment matrix(autocorrelation matrix) 1. Image derivatives Iy2 IxIy Ix2 2. Square of derivatives Iy 3. Gaussian filter g(sI) g(Ix2) g(Iy2) g(IxIy) 4. Cornerness function – both eigenvalues are strong g(IxIy) har 5. Non-maxima suppression

  14. Harris Detector – Responses [Harris88] Effect: A very precise corner detector.

  15. Harris Detector – Responses [Harris88]

  16. Automatic Scale Selection Same operator responses if the patch contains the same image up to scale factorHow to find corresponding patch sizes? K. Grauman, B. Leibe

  17. Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe

  18. Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe

  19. Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe

  20. Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe

  21. Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe

  22. Automatic Scale Selection • Function responses for increasing scale (scale signature) K. Grauman, B. Leibe

  23. What Is A Useful Signature Function? • Laplacian-of-Gaussian = “blob” detector K. Grauman, B. Leibe

  24. Laplacian-of-Gaussian (LoG) • Local maxima in scale space of Laplacian-of-Gaussian s5 s4 s3 s2  List of(x, y, s) s K. Grauman, B. Leibe

  25. Results: Laplacian-of-Gaussian K. Grauman, B. Leibe

  26. Difference-of-Gaussian (DoG) • Difference of Gaussians as approximation of theLaplacian-of-Gaussian = - K. Grauman, B. Leibe

  27. DoG – Efficient Computation • Computation in Gaussian scale pyramid Sampling withstep s4=2 s s s s Original image K. Grauman, B. Leibe

  28. Results: Lowe’s DoG K. Grauman, B. Leibe

  29. Harris-Laplace [Mikolajczyk ‘01] • Initialization: Multiscale Harris corner detection s4 s3 s2 s Computing Harris function Detecting local maxima

  30. Harris-Laplace [Mikolajczyk ‘01] • Initialization: Multiscale Harris corner detection • Scale selection based on Laplacian(same procedure with Hessian  Hessian-Laplace) Harris points Harris-Laplace points K. Grauman, B. Leibe

  31. Maximally Stable Extremal Regions [Matas ‘02] • Based on Watershed segmentation algorithm • Select regions that stay stable over a large parameter range K. Grauman, B. Leibe

  32. Example Results: MSER K. Grauman, B. Leibe

  33. You Can Try It At Home… • For most local feature detectors, executables are available online: • http://robots.ox.ac.uk/~vgg/research/affine • http://www.cs.ubc.ca/~lowe/keypoints/ • http://www.vision.ee.ethz.ch/~surf K. Grauman, B. Leibe

  34. p 2 0 Orientation Normalization • Compute orientation histogram • Select dominant orientation • Normalize: rotate to fixed orientation [Lowe, SIFT, 1999] T. Tuytelaars, B. Leibe

  35. Local Descriptors • The ideal descriptor should be • Repeatable • Distinctive • Compact • Efficient • Most available descriptors focus on edge/gradient information • Capture texture information • Color still relatively seldomly used (more suitable for homogenous regions) K. Grauman, B. Leibe

  36. Local Descriptors: SIFT Descriptor • Histogram of oriented gradients • Captures important texture information • Robust to small translations / affine deformations [Lowe, ICCV 1999] K. Grauman, B. Leibe

  37. Local Descriptors: SURF • Fast approximation of SIFT idea • Efficient computation by 2D box filters & integral images 6 times faster than SIFT • Equivalent quality for object identification • GPU implementation available • Feature extraction @ 100Hz(detector + descriptor, 640×480 img) • http://www.vision.ee.ethz.ch/~surf [Bay, ECCV’06], [Cornelis, CVGPU’08] K. Grauman, B. Leibe

  38. Local Descriptors: Shape Context Count the number of points inside each bin, e.g.: Count = 4 ... Count = 10 Log-polar binning: more precision for nearby points, more flexibility for farther points. Belongie & Malik, ICCV 2001 K. Grauman, B. Leibe

  39. Local Descriptors: Geometric Blur Compute edges at four orientations Extract a patch in each channel ~ Apply spatially varying blur and sub-sample Example descriptor (Idealized signal) Berg & Malik, CVPR 2001 K. Grauman, B. Leibe

  40. So, What Local Features Should I Use? • There have been extensive evaluations/comparisons • [Mikolajczyk et al., IJCV’05, PAMI’05] • All detectors/descriptors shown here work well • Best choice often application dependent • MSER works well for buildings and printed things • Harris-/Hessian-Laplace/DoG work well for many natural categories • More features are better • Combining several detectors often helps K. Grauman, B. Leibe

  41. Outline Detection with Global Appearance & Sliding Windows Local Invariant Features: Detection & Description Specific Object Recognition with Local Features ― Coffee Break ― Visual Words: Indexing, Bags of Words Categorization Matching Local Features Part-Based Models for Categorization Current Challenges and Research Directions 44 K. Grauman, B. Leibe

More Related