130 likes | 346 Views
分组 — 提公因式法分解因式( 1 ). 课时目标 :. 1 明确分组分解法分解因式的意义, 理解分组的步骤与原则。 2 进一步培养观察和分析能力。. 复习:. 1 把下列各式分解因式。. ( 1 ) 5m 2 - 3m (2) 3n(2n - c)+6n 2 (c-2n) (3) mx+my-nx-ny. mx+my-nx-ny. ②. ③. ④. ①. ① ② ,③ ④ 两组,得( mx+my ) - ( nx+ny ). 解 1 :原式 = ( mx+my ) - ( nx+ny ). =m(x+y)-n(x+y).
E N D
课时目标: 1 明确分组分解法分解因式的意义, 理解分组的步骤与原则。 2进一步培养观察和分析能力。
复习: 1 把下列各式分解因式。 (1) 5m2-3m (2) 3n(2n-c)+6n2(c-2n) (3) mx+my-nx-ny
mx+my-nx-ny ② ③ ④ ① ① ② ,③ ④两组,得(mx+my)-(nx+ny) 解1:原式=(mx+my)-(nx+ny) =m(x+y)-n(x+y) =(x+y)(m-n)学.科.网
mx+my-nx-ny ① ② ③ ④ ① ③ ,② ④两组,得(mx-nx)+(my-ny) 解2:原式= (mx-nx)+(my-ny) =x(m-n)+y(m-n) = (m-n) (x+y) 这种利用分组来分解因式的方法叫作分组分解法。
例1 把 a2-ab+ac-bc 分解因式。 ① ② ③ ④ 关键是能否真确分组,可以根据 系数的特点或字母特点进行分组。 分析: 例2 把2ax-10ay+5by-bx分解因式。 ① ② ③ ④
可用分组-提公因式法分解因式的多项式有何特点?可用分组-提公因式法分解因式的多项式有何特点? • a. 多项式项数是四项或四项以上。 • 分组后,每小组内都有公因式。 • 各组提公因式后,组与组之间还有公因式。
注意点:1 分组时小组内能提公因式要 保证组与组之间还有公因 式可以提。 2分组添括号时要注意符号的变化。 3要将分解到底,不同分组的结果 应该是一样的。
巩固练习: 把下列各式因式分解: 1 (1)20(x+y)+x+y (2) p-q+k(p-q) (3) 5m(a+b)-a-b (4) 2m-2n-4x(m-n) • (1)ac+bc+2a+2b (2) a2+ab-ac-bc • (3)5x-15x+2xy-6y (4) 2a2-3x-6xy+9x
下题是小玲做的一道因式分解题, 请分析她做的对否? -ax-ay-x-y 解:原式=-a(x-y)-(x-y) =(x-y)(-a-1) =-(x-y)(a+1)
小结: 1 可用分组-提公因式法分解因式的多项式有何特点? • a. 多项式项数是四项或四项以上。 • 分组后每小组内都有公因式。 • 各组提公因式后,组与组之间还有公因式。 2 采用分组-提公因式法分解因式的注意点 a.选用合理的分组方法。 b. 添括号时注意符号问题。 c.将分解进行到底。