1 / 45

Science Case at ELI-Beamlines

UPOL 22/2/12. Projekt: Výzkum a vývoj femtosekundových laserových systému a pokročilých optických technologií (CZ.1.07/2.3.00/20.0091). Science Case at ELI-Beamlines. Daniele Margarone ELI-Beamlines Project Institute of Physics of the Czech Academy of Science PALS Centre

kelvin
Download Presentation

Science Case at ELI-Beamlines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UPOL22/2/12 Projekt: Výzkum a vývoj femtosekundových laserových systému a pokročilých optických technologií (CZ.1.07/2.3.00/20.0091) Science Case atELI-Beamlines Daniele Margarone ELI-Beamlines Project Institute of Physics of the Czech Academy of Science PALS Centre Prague, Czech Republic

  2. Science Case at ELI-Beamlines • Research Program 1 • Laser generating rep-rate ultrashort pulses & multi-PW peak powers • Research Program 2 • X-ray sources driven by rep-rate ultrashort laser pulses • Research Program 3 • Particle Acceleration by lasers • Research Program 4 • Applications in molecular, biomedical and material sciences • Research Program 5 • Laser plasma and high-energy-density physics • Research Program 6 • High-field physics and theory

  3. ELI-Beamlines Scientific Team RA1 Lasers B. Rus RA2-RA6 G. Korn

  4. Science Case at ELI-Beamlines Protons, Ions, Electrons, X-rays and g-rays • Unique features • relativistic ultrashort and synchronized high-intensity particles, lasers and X-ray beams • high repetition rate • unprecedented energy range • high brightness • excellent shot-to-shot reproducibility (laser-diode and thin-disk technology) • Potential applications, business and technology transfer • accelerator science (new and compact approaches, e.g. Compact FEL) • time-resolved pump-probe experiments (fusion plasmas, warm dense matter, laboratory astrophysics, etc.) • medicine (hadrontherapy and tomography of tumors) • bio-chemistry (fast transient dynamics) • security (non-destructive material inspection)

  5. Target Areas Potential future 3D diffractive X-ray imaging of complex molecules Potential future laser driven FEL/XFEL Potential future laser driven hadron-therapy

  6. RPA (laser-target optimization) • - max. energy increase (H+/Cn+) • - pencil ion beam • - variable ion energy • TNSA (ion beam handling) • - ion beam transport • - electromagnetic selection • - magnetic lens focusing • radiobiological dosimetry • - dose absorption optimization • - real-time monitoring • - adapted treatment planning • - biological cell irradiation • nano/micro structured • submicro-droplets • H-enriched • clusters/mass-limited • double-layer • RPA scheme • TNSA scheme • ion diagnostics RA3 Particle Acceleration • laser-driven electron acceleration • - self guiding (gas target) • - external guiding (gas target) • - solid targets • LUX, FEL & XFEL • neutrons: DD, DT, (p, n) and (g, n) • - single-target scheme • - catcher-target scheme • g-rays from accelerated e-beams • e-e+ pairs from: • - accelerated e- beams (catcher target) • - “hot electrons” in solid targets • Shielding optimization • Radiation damaging

  7. 3D proton beam probing • X-ray probing • optical interferometry • Non linear effects • - self focusing • - filamentation • - transient magnetic fields (astrophys.) • - parametric instabilities • Warm Dense Matter (WDM) • Stopping power of protons/ions in: • - plasmas • - WDM RA5 Plasma & High En. Dens. Phys. • probing of ultraintense electric fields in wakefield • laser channeling in low density plasmas • advanced targets

  8. Pump Laser Solid target Prepulse K-alpha Probe laser Laser-driven x-rays: several approaches Harmonics (solid) Harmonics (gas) K-alpha emission Plasma based x-ray lasers X-rays from relativistic e-beams

  9. K-alpha emission : easy and ultrafast x-ray source - Monochromatic - Fully divergent - Duration 100 fs - KHz rep. rate - Flux : 1e9 ph/shot Main limitations : tunability, polychromaticity, divergence

  10. Harmonics from solid target plasma

  11. Velocity Acceleration Rc . β Radiated energy Electron X-rays from relativistic e-beams We need relativistic electrons undergoing oscillations β Betatron radiation X-rays from relativistic e-beams

  12. From projection images to (almost) 3d structures 3 D diffractive imaging using synchronized ELI x-ray pulses Timing synchronization of 30 fs should allow to go for µm samples diffraction Explosion happens over many ps (Hajdu et al.)

  13. Single- particle diffraction imaging of biological particles without crystallization Kirz,Nature Physics 2, 799 - 800 (2006)

  14. Bright fs sources for applications Bio structures, damage Ablation Phase transitions Magnetism Atomic physics X-ray microscopy Plasma diagnostics Warm dense matter

  15. Laser-driven Electron Acceleration C. Joshi, Scientific America, 2006

  16. Envisioned electron beams at ELI-Bamlines • 50 J beamlines (10 Hz) • Bubble regime (high divergence beam) • Laser parameters: EL=50J, tL=25fs, f=23mm, a0=35 • Plasma parameters: nP=1.8x1019cm-3 • Electron beam parameters: Eel= 1.5 GeV, qel= 6.2 nC • Blow-out regime/self-injection (pencil beam) • Laser parameters: EL=50J, tL=72fs, f=33mm, a0=5 • Plasma parameters: nP=5.3x1017cm-3, Lacc=5.6cm • Electron beam parameters: Eel= 4.4 GeV, qel= 1.2 nC • Blow-out regime/external-injection (pencil beam) • Laser parameters: EL=50J, tL=134fs, f=60mm, a0=2 • Plasma parameters: nP=6.3x1016cm-3, Lacc=8.8cm • Electron beam parameters: Eel= 14.9 GeV, qel= 0.85 nC(?) • 1.3 kJ beamlines (0.016 Hz) • Blow-out regime/self-injection (ELI end-stage) • Laser parameters: EL=1.3kJ, tL=215fs, f=97mm, a0=5 • Plasma parameters: nP=6.1x1016cm-3, Lacc=1.5m • Electron beam parameters: Eel= 39 GeV, qel= 3.4 nC • Blow-out regime/external-injection • Laser parameters: EL=1.3kJ, tL=395fs, f=178mm, a0=2 • Plasma parameters: nP=7.1x1015cm-3, Lacc=22.9m !!! NO • Electron beam parameters: Eel= 131 GeV, qel= 2.5 nC(?) Blow-out regime Laser parameters Plasma parameters Electron beam parameters Scaling laws: S. Gordienko and A. Pukhov, Phys. Plasmas 12 (2005) 043109 W. Lu et al., Phys. Rev.Spec.Top.-Accelerators and Beams 10 (2007) 061301 OSIRIS simulations: L. O. Silva, ELI Scientific Challenges, April 26 2010

  17. Laser-driven Ion Acceleration Ep ~ I1/2 TNSA Photons Non relativistic protons C Vp ~0 Photons Vp ~C Ep ~ I RPA (at very high intensitíes, light pressure accelerates) Relativistic protons C

  18. TNSA • (Target Normal Sheath Acceleration) • high laser contrast (main/pedestal) • short laser pulse (10s fs – few ps) • still occurring when the pre-plasma is “localized” at the target front-side • higher energy gain in metals (returning electron current for the recirculations of “hot electrons”). TNSA • Ponderomotive Acceleration • (Sweeping potential at the laser pulse front) • low laser contrast (dense pre-plasma) • long laser pulse (10s ps – ns) • long pre-plasma length (100s mm – mm) • high laser absorption in the pre-plasma • almost no laser interaction with the solid target Y. Sentoku et al., Phys. Plasm. 10 (2003) 2009

  19. RPA (Radiation Pressure Acceleration) Courtesy of S. Bulanov

  20. Towards Quark-Gluon Plasma Courtesy of S. Bulanov

  21. Records in laser-driven particle acceleration Protons Electrons R.A. Snavely et al., Phys. Rev. Lett. 85 (2000) 2945 S.A. Gaillard et al., “65+ MeV protons from short-pulse-laser micro-cone-target interactions”, Bull. Am. Phys. Soc. G06.3 (2009) (only 10% energy increment ) W.P. Leemans et al., Nature Phys. 2 (2006) 696 A technological progress is needed: towards higher laser intensities!!!

  22. Beyond the energy frontier... ELI intensity regime K. Zeil et al., New Journal of Physics 12 (2010) 045015 J. Fuchs et al., C. R. Physique 10 (2009) 176 and references therein

  23. Envisioned proton beams • 2PW beamlines (10 Hz) • 50 J, 25 fs, 1021 W/cm2, RPA, Epeak= 200 MeV, h = 65%, Np1012, div.: 4°, quasi-monoenergetic • References: • Matt Zepf, ELI-Beamlines Sci. Chall. Workshop, April 26th, 2010 • 10 PW beamlines (0.016 Hz) • 1.3 kJ, 130 fs, 1023 W/cm2, ECut-off = 2 GeV, h = 50%, Np2x1012, div. 10° • 2x1.3 kJ, 130 fs, 20 PW, 2x1023 W/cm2,ECut-off = 2 - 2.5 GeV • 5x1.3 kJ, 130 fs, 50 PW, 5x1023 W/cm2, ECut-off = 4 GeV(ELI end-stage) • References: • B. Qiao et al, PRL 102 (2009)145002 • J. Davis and G.M. Petrov Physics of Plasmas 16, 023105 (2009) • ELI White-book, OSIRIS simulations (by Luis Cardoso) 6x1022W/cm2 2x1022W/cm2 2x1021W/cm2 B. Qiao et al, PRL 102, 145002 (2009)

  24. Basic experiment at E6a (high rep. rate) • TNSA/RPA: PL = 2 PW(10 Hz),IL 1022 W/cm2 , Emax = 200 MeV, Np 1012 Legend OAP: off-axis-parabola; T: primary target; T1/T2: secondary target (proton radiography); RCF: radiochromic film; FM: flat mirror; EMQ: electromagnetic quadrupole optics (1.5 Tesla), TP spectrometer (B=1.5 T, E=10-50 kV); D: detector (film/semiconductor); V: gate valve, LS: local shielding (g-rays/neutrons)

  25. Challenges & advanced source use • Proton/ion acceleration • Improving the beam quality in terms of divergence and monochromaticity • Increasing the beam stability (energy distribution, particle numbers, emittance) • Optimizing the laser to ion conversion efficiency • Use of ultrathin targets (very high contrast and circular polarization are needed) • Beam handling & selection (either through target engineering or conventional solutions, e.g. micro-lenses or magnetic quadrupoles) • Electron acceleration • External injection: development of effective electron beam loading techniques • Use of an all-optical injection scheme (colliding pulses) • Use of a tailored longitudinal plasma density profile • Development of a multiple stage acceleration setup including laser and electron beam optics (synchronization of the laser and electron beams in several tens of meters is necessary!) • Diagnostic requirements and development • Strong energy increase of the particles produced at extreme laser intensities (particles whose energies will range from MeV to tens of GeV) • Huge particle number per shot per second (prompt current) • Energy and beam spreadingof produced particles (no unique detector can be used) • Huge EMP

  26. Laser-driven hadron-therapy (ELI-MED)

  27. Courtesy of J. Wilkens

  28. Courtesy of J. Wilkens

  29. Courtesy of J. Wilkens

  30. Courtesy of J. Wilkens

  31. Courtesy of J. Wilkens

  32. Courtesy of J. Wilkens

  33. Courtesy of J. Wilkens

  34. One of the big Challenges in Physics would be to built a laser powerful enough to breakdown vacuum. Survey by “Science” 2005

  35. EQ=mpc2 Ultra-relativistic intensity is defined with respect to the proton EQ=mpc2, intensity~1024W/cm2

  36. Inverse Compton Scattering The Doppler energy upshift allows one to reach high photon energies, e.g. 100 MeV g-rays with a 10-GeV electron beam.

  37. ELI White Book 530 pages of Science, technology and implementation strategies of ELI

  38. It’s time to wake up!!! Thank you for your attention and invitation!

More Related