900 likes | 1.08k Views
بسم الله الرحمن الرحیم. Nan traditional process. WEDM.
E N D
فهرست 1. مقدمه2. معرفی فرایند (مبانی فرایند)3. کاربرد های فرایند4. اجزاء ماشین5. تشریح فرایند 6. تأثیر پارامترهای ورودی بر پارامترهای خروجی7. نظارت و کنترل فرایند7. توسعه فراوری فرایند9. نمودار , فیلم و عکس10. منابع و مأخذ
مقدمه • ماشينكاري وايركات، فرآيند برادهبرداري است كه در آن از يك منبع با انرژي ترموالكتريكي بهمنظور برادهبرداري استفاده ميشود. فرآيند برشكاري بهوسيله جرقههاي متناوب و كنترل شدهاي است كه بين الكترود يعني سيم و قطعه كار زده ميشود. الكترود سيم نازكي است كه از قرقره باز شده و از درون قطعه كار عبور كرده و از سمت ديگر توسط مكانيزم مربوطه خارج ميشود. بين سيم و قطعه كار فاصله كوچكي به نام گپ وجود دارد كه در حين انجام ماشينكاري مايع ديالكتريك آن را دربر ميگيرد و در ولتاژ مناسب تخليه الكتريكي بين سيم و قطعه كار اتفاق ميافتد و جرقههاي ايجاد شده قطعه كار را بهصورت موضعي تبخير كرده و مايع ديالكتريك آنها را از محل شستشو ميدهد و فرآيند برادهبرداري انجام ميگيرد. ماشينكاري وايركات در چند سال اخير با توجه به نياز روزافزون در برخي از زمينههاي ساخت و توليد بخصوص صنايع قالبسازي دقيق، بسيار پيشرفت كرده و مورد توجه قرار گرفته است.
از آنجاييكه زبري سطح يكي از مهمترين پارامترها در ساخت و توليد محسوب ميشود تحقيقات مختلفي بهوسيله محققين بهمنظور بهينهسازي زبري سطح بهدست آمده در فرآيند وايركات انجام پذيرفته است. اين مطالعات نشان ميدهد زبري سطح در فرآيند وايركات ارتباط نزديكي با پارامترهاي ماشينكاري دارد. اگرچه، تحقيقات منتشر شده اطلاعات جامعي را در زمينه انتخاب پارامترهاي ماشينكاري براي ماشينهاي متفاوت و مواد و شرايط مختلف ماشينكاري فراهم ننموده است. از آنجاييكه ماشينكاري وايركات يك روش ماشينكاري غير سنتي (مدرن) پر كاربرد و مورد نياز با سرمايهگذاري اوليه بالاست، لازم است براي انجام اين فرآيند پارامترهاي مناسب ماشينكاري بهمنظور اقتصادي كردن فرآيند انتخاب گردند. انتخاب پارامترهاي مناسب بهمنظور رسيدن به زبري سطح مورد نظر و يا حداكثر نرخ برادهبرداري با اطلاع از نحوه تأثيرگذاري اين پارامترها بر روي عوامل ياد شده ممكن خواهد بود كه هدف اصلي اين تحقيق نيز قرار گرفته است..
. تنظيم پارامترهاي ماشينكاري تا حد زيادي به تجربه و مهارت اپراتور و استفاده صحيح از جدولهاي ماشينكاري فراهم شده بهوسيله سازندگان ماشين ابزار بستگي دارد. استفاده از عملكرد بهينه ماشين ابزار بواسطه زيادي تعداد پارامترهاي تنظيم شونده دستگاه بسيار مشكل است. كارهاي • پس از آمـادهسازي و طـي مـراحـل تئـوريـك طـراحي آزمايش و اطمينان از امكان اجـراي طـراحـي انجـام شده و نتيجهبخش بودن آن، نوبت به انجام آزمايشها ميرسد. اولين مرحله در فرآيند انجام آزمايشها ماشينكاري است كه خود شامل آشنايي با ساختمان ماشين و نحوه برنامهنويسي و كار كردن با آن است. اين آزمايشها بر روي ماشين وايركات 5 محوره مدل ONA ARUCUT R250 (شكل 3-1) انجام شده است كه مشخصات فني آن پس از شرح فرآيند ماشينكاري وايركات در ادامه ذكر شده است.
تعريف فرآيند وايركات • مباني فرآيند: • ماشينكاري تخليه الكتريكي بوسيله ابزار سيمي (DEWC) كه عموماً بهعنوان ماشينكاري وايركات (WEDM) شناخته ميشود فرآيندي است كه بهمنظور توليد شكلهاي پيچيده 2 و 3 بعدي در مواد رساناي جريان الكتريسته بكار ميرود. • ماشينكاري وايركات، روشي تقريباً جديد در توليد بهشمار ميرود كه اولين بار كاربرد آن در سال 1968 آغاز شد. تا سال 1975 چون فرآيند و قابليتهاي آن توسط صنعتگران درك شده بود عموميت آن به سرعت افزايش يافت. تا سال 1982، تخمين زده شد كه حدود 1500 دستگاه وايركات در ايالات متحده در حال استفاده ميباشند. • ماشينكاري تخليه الكتريكي (EDM) در يك محيط واسط ديالكتريك انجام ميشود، كه اين ديالكتريك موجب ايجاد تخليه الكتريكي بين الكترود و قطعه كار ميگردد. اين فرآيند اساساً يك فرآيند ترموديناميكي است كه در آن هر جرقه ايجاد شده در نقش منبع حرارتي ميباشد. اين حرارت قطعه كار را ذوب نموده و باعث فرسايش آن ميگردد.
در ماشينكاري تخليه الكتريكي بوسيله سيم، الكترود يك سيم رساناست. اين سيم معمولاً از جنس برنج است كه به ماشينكاري كه انجام ميشود و كار مربوطه ممكن است پوشش داده شده باشد. سيم در حين ماشينكاري از بين غلتك هدايت كننده سيم عبور ميكند كه اين غلتكها سيم را به موقعيت دقيق خود هدايت ميكنند. شرايط تخليه الكتريكي در اثر اختلاف پتانسيل ايجاد شده بين قطعه كار و سيم فراهم ميگردد. سيم بطور پيوسته و با سرعت ثابت به داخل قطعه كار تغذيه ميشود. بهمنظور افزايش كيفيت جرقههاي ايجاد شده و شستشوي ذرات كنده شده از قطعه كار در حين فرآيند، مايع ديالكتريك (آب) همواره به شكاف موجود بين قطعه كار و سيم (گپ) وارد ميشود. براي اينكه يك فرآيند ماشينكاري مؤثر و دقيق داشته باشيم لازم است كه فاصله صحيح بين قطعه كار و سيم همواره رعايت شود.
ماشينكاري وايركات با ماشينكاري تخليه الكتريكي متفاوت است، زيرا در اين فرآيند يك سيم نازك با قطر(3/0-05/ میلیمتر 0012/0-002/0 اینچ) نقش الكترود را ايفا ميكند. همانطور كه در شكل 3-2 نشان داده شده است، سيستم از قرقره باز ميشود و به درون قطعه كار تغذيه ميشود و توسط قرقره ثانويه دريافت ميشود. يك منبع تغذيه مستقیم، با فركانس بالا نيز وظيفه تـوليد پـالسهـاي فـركـانس بـالا بين سيم و قطعه كار را بر عهده دارد. فضاي بين قطعه كار و سيم (گپ) توسط آب دييونيزه پر ميشود، كه اين آب نقش ديالكتريك را در فرآيند دارد
مواد در جلوي سيم در حال حركت بهوسيله انرژي حاصل از جرقهها از قطعه كار خورده ميشود، كه از اين نظر با فرآيند EDM يكسان است. با حركت كردن ميز و يا سيم، مسيري بر روي قطعه كار برش داده ميشود. هيچگونه تماس مكانيكي در فرآيند وايركات بين سيم و قطعه وجود ندارد، گپ موجود بين سيم و قطعه كار mm 05/0 تا 025/0 (in 002/0 تا 001/0) است كه بهوسيله سيستم موقعيتدهي كامپيوتري ثابت نگاه داشته ميشود. • بهوسيله ماشينكاري تخليه الكتريكي شكلهاي پيچيده در موادي كه قابليت برادهبرداري پائيني دارند بدون نياز به سرمايهگذاري بالا براي سنگزني و شكلدهي الكترودهاي EDM قابل دستيابي است. دقت بالا و كيفيت سطح مناسب اين روش را بهخصوص در توليد قالبهاي پرس، اكستروژن و نمونهسازي و حتي براي ساختن الكترودهاي EDM مناسب ساخته است. بهعلت استفاده از سيستم كنترل كامپيوتري در اين فرآيند و زمانبر بودن آن يك اپراتور ميتواند بر روي چند دستگاه بهطور همزمان كار كند.
كاربردهاي فرآيند وايركات • اگرچه فرآيند وايركات يك فرآيند برادهبرداري كند است، اما اين قابليت را داراست كه كارهايي كه نياز به تعداد زيادي اپراتور ماهر دارند را بدون اينكه بخواهند هزينه چندين اپراتور را بپردازند انجام دهد. توانايي اين ماشين براي انجام كار بدون نظارت پيوسته نيز بر قابليت و كارايي آن افزوده است. • ماشينكاري قطعه كارهايي با ضخامت زياد، تا حدود(200میلیمتر) علاوه بر آن کاربرد سيستم كنترل كامپيوتري با دقت بالا، اين فرآيند را مخصوصاً در ساخت انواع قالبها كارآمد و پراستفاده كرده است. با استفاده از وايركات در ماشينكاري قالبهاي پرس با توجه به اينكه، قالب، سنبه، سنبهگير و ورقگير ميتوانند با يك برنامه ایماشينكاري شوند ميتوان زمان توليد را تا حد قابل ملاحظهاي كاهش داد. لقيها بهوسيله اصلاح برنامة اصلي بهوسيله دستورات بزرگنمايي، اعمال ميشوند. چون لقيها با دقت كنترل ميشوند، عمر قالب 7 تا 10 برابر افزايش پيدا ميكند.
كـاربـرد عمـده ديگـر وايـركـات مـاشينكاري قالبهاي اكستروژن است. قالبهاي متالوژي پـودر معمـولاً 2 تا 4 بـار ضخيمتر از قالبهاي معمولي هستند كه بايستي جزئيات آن با دقت كـاملـي بـه تـوليد برسد. بهوسيله وايركات، بدون مخروطي شدن و صرف زمان زياد ميتوان به اين منظور رسيد. • از كاربردهاي ديگر وايركات، ساخت آسانتر الكترودهاي دستگاه EDM است، زيرا خشنكاري و پرداخت الكترودها را ميتوان با يك برنامه با تغيير مقياس اصلي انجام داد. • از ديگر كاربردهاي جديد وايركات ميتوان به ساخت چرخدندهها، ابزارهاي فرم، ساخت نمونههاي كوچك از قالبهاي برش، برش همزمان و تودهاي قطعات همشكل، قالبهاي تزريق پلاستيك و قالبهاي بسيار ظريف و دقيق مورد استفاده در تجهيزات الكترونيكي مثل قالب ICها (شكلهاي 3-8 و 3-9) قطعات ظريف مثل نازلهاي جوهر، چرخدندههاي ساعت و غيره اشاره كرد. بطور كلي ميتوان مزاياي ماشينكاري وايركات را بهصورت زير خلاصه كرد:
عدم نياز به ساختن ابزار • كاهش قيمت قالب بين 70-30% • عدم وجود نيروهاي ماشينكاري • برشكاري قطعات سختكاري شده • انجام عمليات ماشينكاري در هنگامي كه اپراتور حضور ندارد • ONA-R250 در جدول اسلاید بعد مشخصات فني دستگاه وايركات آمده است
اجزاء ماشین 1.سیستم موقعیت دهی 2.سیستم تغذیه سیم 3. منبع تغذیه 4. سیستم دی الکتریک 5 . واحد کنترل عددی
اجزاء ماشین • ماشين وايركات شامل 4 سيستم فرعي است: سيستم موقعيتدهي، سيستم تغذيه سيم، منبع تغذيه و سيستم ديالكتريك. • سيستم موقعيتدهي • سيستم موقعيتدهي ماشين وايركات اغلب اوقات شامل يك ميز دو محوره CNC و در بعضي اوقات همراه يك سيستم موقعيتدهي چند محوره براي سيم است. ويژگي منحصر به فرد اين سيستم CNC بايستي كاركرد آن در حالت كنترل انطباقي بهمنظور اطمينان از ايجاد شدن گپ لازم بين ابزار و قطعه كار باشد. اگر سيم با قطعه كار تماس حاصل كرد و يا قطعهاي كوچك باعي ايجاد پلي بين قطعه كار و ابزار شده و اتصال كوتاه برقرار نمود، سيستم موقعيتدهي بايستي اين شرايط را حس كرده و در مسير برنامهريزي شده به موقعيت مناسب برگردد تا گپ لازمه را ايجاد كند.
سرعت خطي برشكاري با وايركات پائين است و معمولاً كمتر از ( 100 ملیمتر بر ساعت )برای فولاد با ضخامت 25 میلی مترمی باشد بنابراین سرعت سیستم (سی ان سی)در این فرایند از اهمیت چندان بالائی نسبت به سایر روشهای سرعت بالا بر خوردار نیست . بهعلت سرعت پائين فرآيند، زياد غيرمعمول نيست كه كاري پيوسته در طول 10 تا 20 ساعت بدون حضور اپراتور در حال انجام باشد. براي آسان كردن انجام ماشينكاري بدون حضور پيوستة اپراتور، سيستمهاي وايركات معمولاً به يك سيستم پشتيبانگيري كه بهوسيله باتري تغذيه ميشود مجهز ميباشند كه اگر فرآيند در حين كار با مشكلي مواجه شده و متوقف شد، سيستم بهطور اتوماتيك راهاندازي مجدد شده و بدون دخالت اپراتور به موقعيت مناسب براي ادامه كار برود.
سيستم تغذيه سيم وظيفه سيستم تغذيه سيم، هدايت سيم بهطور پيوسته و تحت كشش ثابت به درون منطقه كاري است. نياز به كشش ثابت از اين جهت حائز اهميت است كه مانع ايجاد مشكلاتي مانند مخروطي شدن، خط افتادن بر روي كار، پاره شدن سيم و آثار ناشي از ارتعاش ميشود. مراحل متعددي در آمادگي سيم در سيستم تغذية سيم در كنار هم بكار گرفته شدهاند تا از مستقيم بودن آن اطمينان حاصل شود. بعد از اينكه سيم از قرقره تغذيه باز شد، از بين چندين غلتك عبور داده ميشود. اين كار بهمنظور جلوگيري از هر گونه تأثير مخرب سيستم تغذيه سيم در ناحيه تحت برش انجام ميگيرد. سيم پس از عبور از داخل قطعه كار، بهوسيله اجزاي هدايتكننده از جنس ياقوت كبود يا الماس به سمت قرقرههاي كشنده سيم در قسمت زيرين هدايت ميشود، پس از آن بهطور اتوماتيك قطعهقطعه شده و جمعآوري ميشود (شكل 3-3). در ساختمان پايه بعضي از ماشينهاي WEDM بهمنظور افزايش پايداري و دقت سيستم تغذيه سيستم از سنگهاي گرانيتي استفاده ميشود.
سيستم سيم كردن اتوماتيك در ماشينكاري وايركات باعث افزايش قابليتهاي توليدي آن شده كه اين سيستم در صورت پارگي سيم در حين كار آن را بهطور اتوماتيك اصطلاحاً سو ميكند و ماشين را قادر ميسازد كه بدون نظارت پيوسته اپراتور ساعتها كار كند. • مواد معمول مورد استفاده در سيمهاي وايركات با توجه به قطر آنها انتخاب ميشوند. وقتيكه قطر سيم نسبتاً زياد باشد، يعني حدود mm3/0-15/0 (in 012/0-006/0) معمولاً از سيمهاي مسي و برنحي استفاده ميشود. در حاليكه اگر لازم باشد از سيم خوبي به قطر كم يعني mm 15/0 تا 038/0 (in 006/0-001/0) استفاده شود، براي ايجاد مقاومت كافي از سيمهايي از جنس فولاد مولبيدندار استفاده ميشود. • امروزه با استفاده از تكنولوژيهاي جديد با اضافه كردن موادي بهمنظور افزايش مقاومت سيم در دماي بالا، افزايش مقدار درصد Zn بهمنظور بالا بردن خواص الكتريكي يا از ساختارهاي كامپوزيتي با مقدار بالاي Zn در سطح سيم (بهعلت اينكه سطح سيم تأثير مستقيم در خواص تخليه الكتريكي آن دارد) و هستهاي با درصد پائين Zn، بهمنظور بالا بردن همزمان مقاومت در دماهاي بالا و بهبود بخشيدن به خواص تخليه الكتريكي استفاده ميشود.
از روشهاي متعددي براي كنترل كامپيوتري زاويه سيم بهمنظور ايجاد لبههاي مخروطي شكل استفاده ميشود كه در آنها سيم در سه جهت Z, U, V قابل موقعيتدهي است كه ميتواند تا مقدار مناسبي به سيم زاويه بدهد، تا شكل مخروطي را در حين ماشينكاري ايجاد نمايد. اين روند قابليت توليد قطعاتي با شكلهاي پيچيده (شكلهاي 3-4 تا 3-6) كه توليد آنها با ساير روشها مشكل يا غير ممكن است را فراهم ميسازد، به نحوي كه ميتوانيم مخروطي ايجاد نمائيم كه قاعده بالاي آن مربع شكل و قاعده پائين آن دايره و يا بالعكس ميباشد. در پيوست 1 قطعات صنعتي با شكلهاي پيچيده كه بهوسيلة وايركات ماشينكاري شدهاند آورده شده است.
منبع تغذيه • تفاوت عمده منبع تغذيه بكار گرفته شده در ماشين وايركات و اسپارك در فركانس پالسها و جريان توليدي بهوسيله آنهاست. براي توليد هموارترين سطوح ممكن، فركانس حدود 1 مگاهرتز بايستي در ماشين وايركات مورد استفاده قرار بگيرد. در حاليكه فركانسهاي بالا در اسپارك ما را مطمئن ميكند كه هر جرقه مقداري هر چند جزئي از قطعه را ميخورد؛ بنابراين اندازه حفرهها كاهش پيدا ميكند. • بعلت كـم بـودن قـطر سيـم مـورد استفـاده، ظـرفيـت تحمـل جـريان بهوسيله سيم كاهش پيدا ميكند و به همين علت، منبع تغذيه وايركات به ندرت براي جريانهاي بالاي 20 آمپر طراحي ميشود.
سيستم ديالكتريك • آب دييونيزه ديالكتريكي است كه در فرآيند وايركات مورد استفاده قرار ميگيرد. آب دييونيزه به 4 دليل در اين فرآيند استفاده ميشود: ويسكوزيته پائين، خاصيت خنككاري بالا، نرخ بالاي برادهبرداري و نداشتن خطرات آتشسوزي. • كوچك بودن اندازه گپ مورد استفاده در ماشينكاري حكم ميكند كه ويسكوزيته پائين آب دييونيزه ما را از انجام شستشوي صحيح و ك افي در طول فرآيند مطمئن كند. ضمناً آب ميتواند گرماي توليد شده را به نحو كاملاً مؤثري نسبت به روغنهاي ديالكتريك مرسوم از منطقه ماشينكاري دور كند. نرخ مؤثر خنككاري در طول فرآيند اندازة لايه سفيد را به نحو چشمگيري كاهش ميدهد. نرخ بالاي برادهبرداري هنگامي قابل دستيابي خواهد بود كه از آب به عنوان ديالكتريك استفاده شود؛ به هر حال در اين صورت فرسايش بالاي سيم نيز اجتنابناپذير خواهد بود اما از آنجائيكه سيم يكبار مصرف است فرسايش بالاي آن زياد مهم نيست. با توجه به مواردي كه ذكر شد مشخص شد كه چرا آب بهعنوان ديالكتريك در فرآيند EDM مورد استفاده واقع نميشود.
نهايتاً بهعلت سرعت پائين فرآيند وايركات، بسياري از كاربران كارهايي را كه خيلي وقتگير هستند در هنگام شب و يا در اواخر هفته بدون نظارت پيوستة اپراتور انجام ميدهند. در ماشينكاري EDM كاربردي ديالكتريكهايي كه قابليت شعلهور شدن دارند (مانند نفت سفيد)، امكان وقوع آتشسوزي اين امكان را از كاربران سلب نموده است و اين در حالي است كه كاربرد آب بهعنوان ديالكتريك خطر آتشسوزي را در فرآيند وايركات از بين برده است. علاوه بر استفاده از روش غوطهوري، روش پاشش موضعي نيز در فرآيند وايركات مورد استفاده قرار ميگيرد. روش مؤثر در حين استفاده از پاشش موضعي اين است كه يك جريان از ديالكتريك به موارات محور سيم به منطقه ماشينكاري پاشيده شود. در طول انجام آزمايشها در اين تحقيـق نيـز از روش پـاششي استفاده شده است. سيستمهاي آب ديالكتريك بهمنظور كـاهش هـزينه، آب مورد استفاده را بعد از فيلتر كردن بهطور پيوسته در سيستم مورد استفاده قرار ميدهند.
واحد کنترل عددی • 1. استفاده از کنترل عددی • 2.مروری بر چند دستور برنامه نویسی • 3. فایل تکنولوژی
استفاده از كنترل عددي • فـرآينـد عمليـات CNC در مـاشيـن ONA R250 بـر پايه سه محيط بزرگ بنا نهاده شده است: • - محيط آمادهسازي: كه عوامل و پارامترهاي مربوط به «آمادهسازي» قطعه كار و ماشين را براي اجراي عمليات ماشينكاري را دربر دارد. مثلاً خصوصيات به مختصاتها، آفستها، نقاط حركتي سريع، توابع EMDI و غيره. • - محيط اجـرا: كـه عـوامـل و پارامترهاي مربوط به «اجراي» برنامه را دربر گرفته است (شكل 3-11) مثل: شيوه اجراي معمولي، اجراي خشك (بدون ديالكتريك و با ژنراتور خاموش)، اجراي خشك تا نقطهاي كه قبلاً برنامه متوقف شده است، نوع برش (عمودي، مخروطي و …) انتخاب تكنولوژي و غيره. • - محيط ويـرايش: كه نوشتن، اصلاح و نمايش گرافيكي برنامهها را دربر دارد. برنامهها ممكن است به كمك يك وسيله كمكي و يا در ويرايشگر ASCII در خود CNC ويرايش دارند. براي آشنايي كامل با جزئيات اين سه محيط و منوها به كتابچه راهنماي دستگاه، فصل چهار مراجعه شود.
از آنجايي كه مبحث برنامهنويسي CNC و آشنايي با قسمتهاي مختلف محيطهاي موجود براي برنامهنويسي و اجراي برنامه و جزئيات مربوط به آنها گسترده است در اين قسمت از تحقيق تنها به دستورات مهمي كه از آنها در تمامي برنامهها استفاده ميشود و دستوراتي كه در اينجا استفاده شده و چهارچوب كلي يك برنامه CNC اشاره ميشود. • لازم به ذكر است در ماشين وايركات ONAR250 علاوه بر اينكه ميتوان برنامه را خط به خط مستقيماً در ويرايشگر خود دستگاه وارد كرد، ميتوان بر روي كامپيوتر شخصي برنامه را نوشته و آن را در يك فايل متني با پسوند txt يا prg ذخيره نمود و بهوسيله فلاپي به دستگاه منتقل نمود، علاوه بر اينكه پس از انتقال ميتوان برنامه مورد نظر را اصلاح و مجدداً ذخيره نماييم. البته تمامي فايلهاي موجود بر روي دستگاه قابل اصلاح توسط كاربر نميباشد. فايلهايي كه بعد از آنها “A:” آمده است قابل اصلاح و آنهايي كه بعد از آنها “ONA:” آمده است غير قابل اصلاحند. بطور كلي انواع عمليات فايل كپي كردن، پاك كردن، باز كردن، ويرايش و بارگذاري فايلها بر روي سيستم كنترلي ماشين قابل انجام است.
مروري بر چند دستور برنامهنويسي • براي آشنايي بهتر با ساختار كلي يك برنامه در اين قسمت قبل از معرفي و توضيح دستورالعملهاي برنامهنويسي ابتدا برنامهاي كه در اين تحقيق از آن استفاده شده است بهعنوان نمونه آورده شده تا چهارچوب كلي كي برنامه CNC در ماشين مشخص شود. سپس دستورهاي بكار رفته در برنامه بعد از آن معرفي و دستورالعمل استفاده از آنها ذكر گرديده است. لازم به ذكر است پس از بستن قطعه كار به كمك جيگ و فيكسچر بر روي ميز ماشين و با در نظر گرفتن مسيري كه سيم بايستي در حين ماشينكاري طي كند و جلوگيري از برخورد فك بالا و پايين در حين ماشينكاري به قطعه كار و حفظ فاصله لازم آنها از سطح قطعه كار در راستاي محور Z سيم را رعايت مينماييم. سيم را بر قطعه كار مماس ميكنيم و آنجا را مبداء مختصات نسبي قرار ميدهيم (مسير بر روي شكل 3-11 مشخص شده). • برنامه CNC
برنامه CNC كه براي ماشينكاري استفاده شده در زير آورده شده است: • PROGNAME T30 • COOR XO YO UO VO ZO THICK 30 • LOAD TECH ONA: S-ST25LT.tec • INCR • INICUT • INTL Y-20 • XO.3 • X-O.3 • STOP • PRINT TIME • : • 26. Wire CUT • 27. TRAV Y80 • 28. END • خط 1 نشاندهنده اسم برنامه است كه معمولاً همان اسم فايل را دارد ولي ميتواند هر چيزي باشد. • خط 2: مختصات كاري را تنظيم ميكند و ضخامت قطعه كار را نيز دربر دارد. • شكلي كلي اين دستور بهصورت زير است: • COOR X<n> Y<n> U<n> V<n> Z<n> THICK <n> • (n در اين دستور يك عدد است). • خط 3: فايل تكنولوژي به اسم ONA: S-St25lt.tec را در حافظه كنترلي دستگاه بارگذاري مينمايد شكل كلي اين دستور بهصورت زير است: • LOAD TECH <nom> • (nom در اينجا اسم فايل تكنولوژي است). • در صورت لزوم ميتوان فايلهاي آفست و اصلاح ابزار مورد نظر را نيز با استفاده از دستورهاي: • LOAD OFFSET <nom> • LOAD COMP <nom> • به حافظه دستگاه فراخوانده، كه در اينجا استفاده نشدهاند يعني از فايلهاي آفست و اصلاح ايزار پيشفرض استفاده شده است.
فايل تكنولوژي • فايل تكنولوژي حاوي اطلاعات مورد نياز براي ماشينكاري مانند تنظيمات ژنراتور كه خود حاوي جريان، ولتاژ مدار باز، زمان خاموشي پالس، ولتاژ گپ و پارامترهاي مربوط به سيم، مثل كشش قابل تحمل سيم، سرعت تغذيه سيم، فشار ديالكتريك و ساير پارامترهاي ديگر مربوط به پرداختكاري و خشنكاري، آفستها، پيشروي و غيره است. • اگر در سربرگ تكنولوژي كه در حقيقت نمايش گرافيكي فايل تكنولوژي است پارامتري بر روي مقدار پيشفرض تنظيم شده باشد (مقادير آنها كه از تكنولوژي فايل موجود بر روي دستگاه خوانده شده و عدد ظاهر شده در آن قسمت به رنگ سياه خواهد بود ولي اگر اين مقدار توسط كاربر تغيير داده شود رنگ عدد مربوطه در آن قسمت قرمز رنگ خواهد شد. • لازم به ذكر است كه كليه مقادير موجود در سربرگ تكنولوژي را چه قبل از اجراي برنامه و يا در حين اجراي برنامه ميتوان تغيير داد اما بهترين زمان براي اعمال تغييرات زماني است كه سيم به اندازه كافي درون قطعهكاري پيشروي كرده است (حدود 5 ميليمتر) و ماشينكاري به شرايط پايدار خود رسيده است..
خصوصاً زمانيكه پارامترهاي حساسي مانند مقادير بالاي جريان و يا ولتاژ را بايد اعمال كرد و زمان خاموشي پالس نيز كوتاه است بايستي ماشينكاري كاملاً به حالت پايدار خود رسيده باشد تا اينكه باعث پارگي سيم نشود. مخصوصاً زمانيكه سيم در آستانه ورود به قطعه قرار دارد، بايستي پارامترهايي مثل جريان و ولتاژ را تا حد امكان كم كرده و زمان خاموشي پالس را هم تا حد امكان افزايش داد، چون در آستانه ورود سيم به قطعه كار ممكن است محل تماس سيم و قطعه بر روي بخش كوچكي از سيم تمركز يافته باشد كه اين ميتواند بهعلت ناهمواريهاي معمول موجود در سطح بيروني قطعه كار و همچنين آلودگيهاي موجود بر روي سطح و احاطه نشدن درست سيم و قطعه كار در محل برش بهوسيله ديالكتريك باشد. در صورت تمركز جرقهها بر روي قسمت كوتاهي از سيم پارگي اجتنابپذير خواهد بود.
براي ورود سيم به قطعه كار پس از مماس كردن سيم توصيه ميشود براي جريان مقدار 9 يا 10 و مقدار ولتاژ نيز 110 و زمان خاموشي پالس ms 40-35 انتخاب شود و بعد از 4 تا 5 ميليمتر پيشروي سيم به درون قطعه طي چند مرحله اين مقادير به مقادير مورد نظر (كه در هر آزمـايش تعيين شده است) رسانده ميشود. بنابراين براي اندازهگيريها نيز بايستي اين طول از قطعه (5 ميليمتر ابتدايي قطعه در راستاي برش) را در اندازهگيري دخيل ننمود تا نتايج حاصله نتيجة پارامترهاي تنظيم شده باشد. • خط 4: تعيين كننده سيستم مختصاتي است كه شكل كلي آن در زير آمده است: • سيستم مختصاتي مطلق (مختصات هر نقطه نسبت به مبدأ سنجيده ميشود). ABS • سيستم مختصاتي نسبي يا افزايشي (مختصات هر نقطه نسبت به نقطه قبل سنجيده ميشود. INCR • سيستم متريك METR • سيستم اينچي INCH • خط 5: اين دستور باعث ميشود كه عمليات وايركات (يعني اعمال تنظيمات ژنراتور) وقتي كه سيم خارج از قطعه كار قرار دارد انجام نشود. بهعبارت ديگر سيستم كنترل CNC تنظيمات ژنراتور را زمانيكه سيم به قطعه كار وارد شده است اعمال ميكند، تا از پارگي سيم جلوگيري شود. پس از اين دستور پارامترهاي تنظيم شده در فايل تكنولوژي اعمال ميگردند.