170 likes | 297 Views
This research study focuses on optimizing fossil power plants to balance fluctuations from renewable energy sources in the German electric energy system by developing flexible power plant models and strategies.
E N D
DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES M. Hübel, Dr. J. Nocke, Prof. E. Hassel University of Rostock Institute of Technical Thermodynamics Baku, 23.05.2013
Overview • Motivation • Reference PowerPlant • Simulation and Validation • ExampleResults • Outlook Institute of Technical Thermodynamics – Dynamic Power Plant Simulation
Motivation German Electric Energy System 2020 Installed Capacities Photovoltaic: ~ 50 GW Wind: ~ 55 GW Consumer Load Maximum: ~ 80 GW Average: ~ 60 GW GRID FREQUENCY indicats deviations in the energy balance http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg Institute of Technical Thermodynamics – Dynamic Power Plant Simulation
Motivation German Electric Energy System 2020 Annual Production Photovoltaic: ~ 50 TWh Wind: ~ 120 TWh Annual Consumption ~ 600 TWh/a GRID FREQUENCY indicats deviations in the energy balance http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg Institute of Technical Thermodynamics – Dynamic Power Plant Simulation
Motivation German Electric Energy System 2020 Annual Production Photovoltaic: ~ 50 TWh Wind: ~ 120 TWh Annual Consumption ~ 600 TWh/a GRID FREQUENCY indicats deviations in the energy balance Fossil: >300 TWh http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg Institute of Technical Thermodynamics – Dynamic Power Plant Simulation
Motivation Role of Fossil Power Plants in the German Electric Energy System • Most of our consumed electric energy is from thermal power plants – today and in the next decades • Some grid services, e.g. Primary Control can currently be done only by thermal power plants • (too) little investments for modernization and optimization within this sector – high potential for optimization METHODE: Dynamic Modeling GOAL: Flexible power plants P Gradmax Pmin Decreasing Minimum Load Increasing Load Gradients • Identify restrictions • Develop optimization strategies • Comparison of scenarios t Operating Schedule Institute of Technical Thermodynamics – Dynamic Power Plant Simulation
Reference Power Plant Jänschwalde Block D • Year of commissioning: 1985 • combustible: lignite • generator output: 530 MW • Efficiency: 36% • live steam • mass flow rate: 2x230 kg/s • pressure: 162 bar • temperature: 535 °C C1 C2 D1 D2 Block C Block D Werk Y2 Lehrstuhl für Technische Thermodynamik – Dynamische Modellierung des Kraftwerks “Jänschwalde”
Overview on Power Plant / Model Structure Boiler Turbine Condensator LP-Preheaters Feedwater System HP-Preheaters Lehrstuhl für Technische Thermodynamik – Dynamische Modellierung des Kraftwerks “Jänschwalde”
Fundamental equations Outlet massflow Outlet enthalpy flux Mass balance Energy balance Momentum balance Heat transfer Inside wall at boundary layer according Fouriers α determined by Dittus-Boelter heat transfer equation (1-phase flow) or Chen-correlation (2-phase flow) Outlet p Toutside Tinside TFluid Δ p heat flux Inlet p Inlet massflow Inlet enthalpy flux
Simulation and Validation Input Data Results Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”
Simulation and Validation Power Output P Generator P Generator Simulated Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”
Simulation and Validation Boiler Temperatures Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”
Simulation and Validation Preheater Temperatures Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”
Simulation and Validation Preheater Temperatures Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”
Example Results Fatigue in components for the reference scenario Result • Fartigueforthecomponentsvariesbetween 0,0008 and0,0051 % forthereferencescenario • Evaporator andSuperheater 2 arecriticalcomponents in dynamicoperation • Conclusion • Same inputscenariodones not leadto same fatiguebecauseof different temperatuesand different geometries Fartigueof Headers
Outlook Lastgradient Load gradient Scenarios 2.5%, 4%, 6% Mindestlast Min load scenarios 50%, 37.5%, 33%, 20 % different operationmodes Simulation ofcriticalloadand wind scenariosundervariationofloadgradient, min loadof PP Jänschwaldeoroperationofthe power plant in specialmode Stillstand Gradmax Pmin operation parameters special operation modes „shut down & restart“ „reduce to circulation mode“ Institute of Technical Thermodynamics – Effects of fluctuating Wind Power on Power plant operation
Thankyouforyourattention! Dipl.-Ing. M. Hübel Dr.-Ing. J. Nocke Prof. Dr.-Ing. E. Hassel Andthankstooursponsorsforfinancialsupport Institute of Technical Thermodynamics – Dynamic Power Plant Simulation