1 / 53

Lecture 9 PARTICLE DETECTORS

Lecture 9 PARTICLE DETECTORS. Detlev Gotta Institut für Kernphysik, Forschungszentrum Jülich / Universität zu Köln GGSWBS'12 , Batumi, Georgia 5th Georgian – German School and Workshop in Basic Science August 16, 2012 . WHAT TO DETECT ?. EXAMPLES OF COMBINED DETECTION SYSTEMS.

keelty
Download Presentation

Lecture 9 PARTICLE DETECTORS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 9 PARTICLE DETECTORS Detlev Gotta Institut für Kernphysik, Forschungszentrum Jülich / Universität zu Köln GGSWBS'12, Batumi, Georgia 5th Georgian – German School and Workshop in Basic Science August 16, 2012

  2. WHAT TO DETECT ? EXAMPLES OF COMBINED DETECTION SYSTEMS HOW TO DETECT? INTERACTION OF CHARGED PARTICLES WITH MATTER“ MASSIVE NEUTRAL PARTICLES WITH MATTER “ RADIATION WITH MATTER DETECTOR PRINCIPLES

  3. WHAT TO DETECT ?

  4. PARTICLES particledetectorregistration Light Heavy

  5. PARTICLES Whatcharacterizes a particle? mass M charge Q Spin intrinsic angular momentum S life time t0 shape (forextendedparticles) <r2>

  6. RADIATION fluid gas „light“ fundamental constant: c = speedof light in vacuum ( 30 cm / ns)

  7. RADIATION Whatcharacterizeswaves? wavepropagationvelocity c = ln wavelengthl frequencyn particlephysics usuallyelectromagneticradiation wavepropagationvelocity in vacuum c = l n “ “ “ in medium c‘ = l‘n < c indexofrefaction n = c / c‘

  8. CONSTITUENTS OF MATTER I atoms atomicshellsnucleus electronprotonneutron e p n Q  1 + 1 0 MMp / 1836 Mp Mp size < 10-18 m 0.8  10-15m life time t0 > 1026 y > 1029 y 886 s decay - - n  p en 10-10m

  9. CONSTITUENTS OF MATTER II newparticles – unstablebeingfree • pionskaonsmanymore • p K … • Q 0,  1 2  0,  1 • M Mp / 7  Mp / 2 • size 0.6  10-15 m 0.6  10-15 m • life time t0p 2610-9 s K 1210-9 s • p0 810-17sK0S,L910-10 / 510-8 s • decayp m  n K m n, … • p0 g g K0 p + p- , p0 p0 ,...

  10. PARAMETERS massive particlesel.-mag. radiation total energy restmass m0≠ 0 rangein matter = 0 attenuation in matter charge Q ≠ 0 deflection in el.-mag fields = 0 nodeflection life time  = 0decaylengthl = v t =  relativisticfactor h Planck constant = minimal action

  11. HOW TO DETECT ?

  12. FORCES • nuclearforcekeepsprotonsandneutronstogether • electromagneticforcekeepselectronsaroundthenuclei • weakforcemakesthe (free) neutrontodecay • gravitationkeepsus on theground Standard Model strength

  13. ELECTROMAGNETIC FORCE • a forceismediated • classicalpicturequantumworld • byfieldaround a sourcefieldquanta = particles • „light“ particles = photonsg electromagneticradiation = E and B fieldsinteractswithelectriccharges

  14. DEFLECTION OF CHARGED PARTICLES IN EL.-MAG. FIELDS • electricfield • magneticfield B = const.  circularmotion B  plane ofprojection r

  15. SIGNAL CREATION • via electriccharges • measuretheelectriccurrentIorvoltageU Q I resistor R U U capacitor C

  16. INTERACTION OFCHARGED PARTICLES WITH MATTER

  17. CHARGED PARTICLES interactionhappensbycollisionsofparticles type 1 and 2 • before after collision • 1. Mparticle 1 >> Mparticle 2 • 2. Mparticle 1 = Mparticle 2

  18. CHARGED PARTICLES I: ENERY LOSS BY COLLISIONS collisionscreateelectronionpairs Bragg peak 1. Mparticle >> Melectron e.g. protons, deuterons, … 2. Mparticle= Melectron electronsorpositrons for all elements stronglyionising welldefinedrange R! nodefinedrange R! exponentialattenuationwithdepth x µ: material dependentattenuationcoefficient weaklyionising

  19. CHARGED PARTICLES II: ENERY LOSS BY RADIATION Radiation ifvparticle > cin medium Cerenkov 1930s „light“ blue! thechargepolarizesthe medium emissionunderspecific angle C electrons „radiate“ in thewaterabove thecoreof a nuclear power plant cos C = 1 / n n = indexofrefraction (small) dispersion ! Cmeasuresthevelocityoftheparticle Cerenkov wave front acousticsanalogue: Mach‘s coneforsupersonicsource

  20. INTERACTION OFMASSIVE NEUTRAL PARTICLES WITH MATTER

  21. NEUTRONS collisionscreaterecoilparticles maximumenergytransferforMneutral = Mrecoil centralcollision all energyistransferred non central all energiesaccordingtoscattering angle cloudchamberpicture neutrons– nodefinedrange detectionbyrecoilofprotons (from hydrogen) MProtonMNeutron i.e. goodshieldingsarewater concrete (15% water) paraffin ( (CH)n) … energytransferDE per collision probability DE neutrons

  22. INTERACTION OFRADIATION WITH MATTER

  23. RADIATION I : PHOTO EFFECT requiresparticlenatureof „light“ Einstein 1905 1. photondisappears photoelectronEe = Ephoton- EB 2. refillingof hole in electronshellby a) emissionofphotonor b) Augerelectronemissionof looselyboundouterelectron EAuger EB detectedenergy E photopeak E = Ephoton = Ee+ EB escapepeak E = Ephoton - EKa photo peak escape peak example Argon EKa = 2.95 keV photonEPhoton = 6.41 keV Energy

  24. RADIATION II : COMPTON EFFECT proofofparticlenatureof „light“ Compton 1922 billardwithphotonsand „quasifree“ electrons Δλ =λ (1− cosθ ) photondoesnotdisappear recoilelectronEe = Ephoton– Ephoton‘  continuousspectrum detectedenergyE = Ee weneglegt EBoftheelectron andErecoilofthenucleus becauseusually EB, Erecoil<< Ee Compton edge = maximumenergytransfer

  25. RADIATION III : BREMSSTRAHLUNG acceleratedchargedparticlesradiate Hertz 1886 electromagneticwaves bendingforceby Coulomb potential force acceleration anydistance r  continuousspectrum a recoilpartner (nucleus) isneededtofulfil energyandmomentumconservation characteristic X-rays refillingofholes in inneratomicshells

  26. +Ze RADIATION IV : PAIR PRODUCTION proofofmass-energyequivalence Blackett 1948 conversionofenergyinto matter Ephoton = h> 2 melectron in general > 2 mparticlesat very high energies el.-mag shower e+ e –  - cascade pair productionand Bremsstrahlung alternate shower may start with photon orelectron radiation length x0 characteristic material dependent constant depth, where about 2/3 of the incident energy is converted a recoilpartner (nucleus) isneededtofulfil energyandmomentumconservation  magneticfieldB

  27. CHARGED PARTICLES : SUMMARY I  2M0 MIPs minimumionsingparticles • stoppingpower T < 2M0 Fractional energy loss.

  28. CHARGED PARTICLES : SUMMARY II Fractional energy loss per radiation length in lead as a function of electron or positron energy.

  29. RADIATION: SUMMARY I crosssections  Z5 s reactionprobability

  30. x Io I dx RADIATION: SUMMARY II Lambert-Beer law attenuation intensity after layerthickness x transmission sumof linear attanuationcoeff.

  31. DETECTOR PRINCIPLES

  32. not only HISTORY (Wilson) cloudchamber typical Open Day presentations saturatedalcoholvapor  a-particleemittingnuclide overheatedLH2 bubblechamber (D. Glaser noble prize 1960) + magneticfield "beer" inspired!!! amongothers discoveryofthe weak neutral current BEBC @ CERN 73 until 80ies 3.7 T, 35 m3 LH2

  33. CHARGE capacitor voltagegenerator ionisingparticle currentorvoltagedetection chargecreatedbychargedparticlesorby„light“iscollected byapplying a voltagebymeansof a curentorvoltagedetection

  34. SCINTILLATORS produce “LIGHT” ionisationcausedby chargedparticlesorlight excitationanddelayed light emission usually in the UV range anorganicNaI(Tl), CSI, BaF2, … inorganicdoped „plastics“ UV light isconvertedtocharge at a photocathodeand multipliedby a multistage photo „multiplier“ 

  35. TIME 10 ns

  36. WIRE CHAMBERS I electronmultiplication aroundanode (fast) driftofions (slow) typicaliondriftvelocity: 1 - 10 cm/(µskV) Ar CH4 multiplication avalanche gain 105 - 106 to control avalanche quench gases, e.g. CO2, CH4, C2H6 wirechamberstutorial: F. Sauli CERN yellowreport 99-07

  37. WIRE CHAMBERS II manywires: MWPC = multiwire proportional chamber positionresolution wiredistancetypically 2 mm fieldconfiguration • (x,y) - coordinate per pair offrames • trajectoryfrom MWPC stacks

  38. WIRE CHAMBERS III tracking: cut on fiducialtargetvolume example: p-3He pnnordn target 3He vesssel pion beam protons MWPC 1 beam defining counters beam definingcounters mainlypcarbonreactions deuterons MWPC 2 goodbadevent

  39. Type-2 module (520 ‘straws’) ATLAS at the LHC Ileft Iright Dz < 1 mm z ZEUS - DESY wedge STRAW TUBES individual counters, timing 20 ns HV: coat, ground: sense wire (~ kV) typicalsize: length 1 - 2 m, f mm - cm "simple" mechanics 10 MHz rate inside magnetic field gas filling e.g., Ar/C2H6 Monte Carlo simulation resistive read out wall: aluminised mylar foils anode wire: f 20 µm

  40. DRIFT CHAMBERS I time  position external time reference, e.g., plastic scintillator trick: choose field configuration, which keeps the nonlinearity of time-to-position relation small position resolution 20 µm

  41. inclined wires DRIFT CHAMBERS II improved position resolution by nearest 3 wires method

  42. STAR TPC - RHIC, Brookhaven TPC - time projectionchamberDavid Nygren, 1974 idea: avoid pile-up many MWPC planes (typical gas thickness of 1 cm) principle: electrons produced follow the constant electric field lines to a single MPWC plane located at one end of the volume ( x-y coordinates on this plane) Third coordinate, z, from the drift time of the electrons to the anode plane • properties: • full 3-dimensional detector • constant drift velocity due to the collisions in the gas mixture (typical a few cm/µs). • low occupancy even for high background (high rates) • large dE/dx due to large gas thickness (particle identification)

  43. Charge Sharing Track Cluster • Pixel Tracker • Pixel Size • Occupancy • Charge Sharing • S/N • ExB Drift • Radiation Damage • LHC - 1014 /cm2/yr Single Track & Trigger charge center of gravity  high position resolution vertex resolution (20-30) mm IP

  44. Readout Chip Sensor +  +  SILICON MICRO - STRIP DETECTORS I miniaturisation principle pn diode as almost all semiconductor detectors typical x-y (front-back) arrangements 200 µm strips layer thickness 300 µm charged particle arrays of soldering dots

  45. silicon µ-strip module SILICON MICRO - STRIP DETECTORS II CMS - LHC scheme • inner tracker ANKE - COSY • vertex detection • recoils • polarisation (left-right asymmetry) semiconductor telescope 65/300/300/5500 µm thick double-sided Si-strip detectors

  46. EXAMPLES OF COMBINED DETECTION SYSTEMS

  47. focal plane ANKE@COSY I: SET-UP aim: measuresimultanuouslypositivelyandnegativelychargedparticles e.g., pp  pp K+ K particle identification by dE/dx 1 16 FOCAL PLANE SPECTROMETER forpositivelychargedparticles counternumber

  48. ANKE@COSY II: FOCAL PLANE DETECTOR

  49. WASA@COSY I: SET-UP aim: measurephotonsfrom neutral particledecay in coincidencewithchargedparticles e.g., dd 4He p0 gg photondetector: calorimeterchargedparticledetector: forwardhodoscope

  50. WASA@COSY II: CALORIMETER

More Related