slide1
Download
Skip this Video
Download Presentation
Rare K Decays: Report from the Sensitivity Frontier.

Loading in 2 Seconds...

play fullscreen
1 / 56

Rare K Decays: Report from the Sensitivity Frontier. - PowerPoint PPT Presentation


  • 84 Views
  • Uploaded on

Rare K Decays: Report from the Sensitivity Frontier. R. Tschirhart Fermilab August 9th 2002. C. Dukes, University of Virginia D. Jaffe, BNL. S. Chen, TRIUMF G. Lim KEK P. Cooper, FNAL CKM, KOPIO, and KEK-391 collaborations. Lots of fine material borrowed from….

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Rare K Decays: Report from the Sensitivity Frontier.' - keegan-richardson


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1
Rare K Decays:

Report from the Sensitivity Frontier.

R. Tschirhart

Fermilab

August 9th 2002

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

lots of fine material borrowed from
C. Dukes, University of Virginia

D. Jaffe, BNL.

S. Chen, TRIUMF

G. Lim KEK

P. Cooper, FNAL

CKM, KOPIO, and KEK-391 collaborations.

Lots of fine material borrowed from…

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide3
B(K+ -> p+nn)=1.57+1.75-0.82x10-10

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

quantitative tests of the ckm formalism
The K pll decay modes allow access to quark level physics since dependence on hadronic physics can be removed by normalizing to the well measured K l+pn processes. This is new ground for kaon physics.

Unfortunately the pl+l- final states, while easier to measure, have correspondingly high levels of radiative backgrounds, (e.g. KL e+e-gg)

Which leads us to the K pnn challenge…

Quantitative Tests of the CKM Formalism.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

k pnn in the standard model
K pnn in the Standard Model
  • No Radiative Backgrounds.

(& No radiative signal!)

  • Leading diagrams

Direct sensitivity toVtd, and BSM physics such as SUSY that can be present in these loops.

Dressing up into hadrons:

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide6
Let’s review the quark level theory of these processes….

The CKM Matrix:

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide11
Testing the CP structure of the CKM Matrix:

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide12
CKM structure of these modes…

Vtd

Normalize to semileptonic process.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide13
Expectation and Measurements…

Uncertainty dominated by current errors on A,r, and h.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

the k p nn experimental program
BNL E787 completed. Flux of 5.9x1012 stopped kaons analyzed. Two candidate events found with a measured background of 0.15+/-0.05 events corresponding to:

BNL E949 running, upgrade of E787. Expect an effective flux of 40x1012 stopped kaons corresponding to 5-10 SM events.

Fermilab CKM (Charged Kaons at the Main injector) approved. Decay in-flight technique with a goal of 100 SM events over 10 background. This will match expected theory uncertainty. Physics Results in 200X.

The K+p+nn Experimental Program

B(K+p+nn) = (1.57+1.75-0.82) x10-10

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide17
Signal and Background Kinematics…

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide18
E787/E949: The definitive stopped K+ detector.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide19
BNL E787/E949

Instrumentation:

1-2 MHz of K+ stop in active target.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide20
Instrumentation continued…

Particle ID exploits space and time topology of p m e decay chain. This limits max rate to less than about ~tm (1 msec).

tm

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide22
E787 Analysis Strategy.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide23
Validating analysis cut inversion to determine background estimates from the data:

2-body pp from K+ p+p0 decays:

pp before g-veto.

pp after g-veto.

(1-ep0 = 1.7x10-7 )

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide24
On opening the box, two events are found…

Background dominated by K+p+p0 where p0 veto failed.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide30
Ring Radius (cm)

Track Momentum (GeV/c)

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide31
M2missp0 = 18x10-3 Gev2/c4

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide32
Full GEANT simulation of:

K+p+p0 Bkg.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide33
b=1 Rings

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

the k l p 0 nn experimental program
KTeV search complete. Flux of 0.33x1012 in-flight kaon decays analyzed. No events observed. Limit (90% CL) of <5.9x10-7 established. Technique required Dalitz decay of p0 (p0 e+e-g) to control backgrounds to 0.1 event level. New techniques required to reach SM level.

KEK-E391a in construction, commissioning this Fall. Technique is based on fully hermetic photon veto coverage. Expected sensitivity of 1x10-10. This is still x30 above SM level, but this experiment is vitalto establish hermetic photon veto techniques. Proposed continuation to JHF in 200X.

BNL KOPIO experiment approved. Novel techniques to measure K0 momentum and photon directions. Expected sensitivity of 50 SM events over a background of ~20 events. Physics Results in 200X.

The KLp0nn Experimental Program

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide36
KL Decay Modes…Everything is the enemy; some worse than others….

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide37
Where is the goal?

G.Y. Lim; KEK

Ke3, Kp3, Km3

BR(KLgponn)

KTeV

d Current Exp. Limit

hep-ph/9908399

hep-ph/9804412

hep-ph/9808487

Limit from K+gp+nn (PRL 84, 3768 (2000))

E391a

New Physics (?)

S. M. Prediction

JHF KOPIO(BNL)

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide38
B.G. from KLgp-e+n Decay

Veto charged particles

Detector Inefficiency

  • Inefficiency of g detection Inefficiency for charged particles

G.Y. Lim; KEK

NIM A359 p478 (1995)

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide39
E391a Detector Setup
  • KLpo n n
        • ggNothing
    • pure CsI calorimeter4pveto system

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide44
Let’s consider a possible scenario of how B&K precision measurements can probe for physics beyond the Standard Model….

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide45
1-s Bands for K pnn and sin2b & Dms/Dmd

at Standard Model Central Values:

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide46
1-s Bands for KLp0nn and sin2b & Dms/Dmd

at SM level and K+ p+nn at E787 central value:

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide47
s-Contours for KLp0nn and sin2b & Dms/Dmd

at SM level and K+ p+nn at E787 central value:

With E949 alone

With CKM experiment

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

conclusions
Rare kaon physics has matured to the point where the step from proven 1x10-11sensitivity to 1x10-12 has been sensibly argued. This sensitivity is the key that will unlock the door to K pnn.

This step is fueled by ever increasing proton drivers (7x1013 protons/pulse with the AGS!), very clean kaon beams, and innovative detector technologies.

The CKM, KOPIO, and [email protected] form a suite of promising experiments that can reach the 1x10-12 frontier in this decade.

Conclusions

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

spare slides
Spare Slides.

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

slide51
K+p+ n`n: a rising star on the stage of flavor physics

G. D’Ambrosio and G. Isidori

hep-ph/0112135

“ Motivated by the new E787 (results) we analyze the present impact and future prospects opened by measurements of Br [K+p+nn] ”

More cases (±1s and 90% CL) for E787, E949 and CKM

R. Tschirhart, Fermilab. XXX SLAC Summer Institute.

psc 3/19/02

ad