1 / 27

Precision Electroweak Measurements at LEP

WIN 05 Weak Interactions and Neutrinos 2005 Delphi - June 8, 2005 Working Group 1 : Electroweak Symmetry Breaking. Precision Electroweak Measurements at LEP. Paolo Azzurri – INFN Pisa. LEP1 & LEP2. LEP1 (1989-1995): 4  200pb -1 @ √ s=m Z → 4  5 Million Z decays

kay
Download Presentation

Precision Electroweak Measurements at LEP

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. WIN 05 Weak Interactions and Neutrinos 2005 Delphi - June 8, 2005 Working Group 1: Electroweak Symmetry Breaking Precision Electroweak Measurements at LEP Paolo Azzurri – INFN Pisa

  2. LEP1 & LEP2 • LEP1 (1989-1995): 4200pb-1 @ √s=mZ • → 45 Million Z decays • LEP2 (1996-2000): 4800pb-1@ √s=161-209 GeV • →410,000 W pairs Precision on Z and W mass ΔmZ(1986)=1.7 GeV [SPS] → ΔmZ(1996)=2.1MeV [LEP] ΔmW(1986)=1.5 GeV [SPS] → ΔmW(2002)=39 MeV [LEP+TEV] P.Azzurri - Precision EW @ LEP

  3. EW Tree Level (R.Tenchini) 2 1986 2002 More and more evidence for EW radiative corrections ! 2 1986 2002 Tree Level P.Azzurri - Precision EW @ LEP

  4. One loop EW radiative corrections Need to introduce three additional parameters mtop mhiggs αS Observables Oiare Contribution of radiative corrections P.Azzurri - Precision EW @ LEP

  5. Z pole Forward-Backward Asymmetries P.Azzurri - Precision EW @ LEP

  6. B Asymmetry NEW FINAL RESULT Χ2/n=0.58 Error dominated by statistics P.Azzurri - Precision EW @ LEP

  7. Sin2ΘW from Asymmetries FINAL RESULT Historical difference between ALR(l) SLD and AFB(b) LEP Prob=3.7% now 3.2σ P.Azzurri - Precision EW @ LEP

  8. Hadronic Vacuum Polarization and α(MZ) P.Azzurri - Precision EW @ LEP

  9. Small angle Bhabha scattering Evidence for αQED running and for Δαhad in the t-channel P.Azzurri - Precision EW @ LEP

  10. EW at LEP2 P.Azzurri - Precision EW @ LEP

  11. Photons @ LEP2 Clean environment for new physics ! Constraints on: Coulomb Deviations, QED cutoffs, SUSY Neutralinos & Gravitinos, extra-dimensions Gravitons, excited electrons, …. (Λ>1TeV) P.Azzurri - Precision EW @ LEP

  12. Fermion Pairs @ LEP2 More constraints on: extra-dim Gravitons, Contact Interactions, Z’ bosons, squarks, leptoquarks, … (Λ>1TeV) P.Azzurri - Precision EW @ LEP

  13. Single W and Z In agreement with SM within 8% precision In agreement with SM within 7% precision P.Azzurri - Precision EW @ LEP

  14. Z-pairs No gauge self couplings involved in Standard Model Z-pair production In agreement with SM within 5% precision P.Azzurri - Precision EW @ LEP

  15. W-pair events Channel efficiency purity bkg ll 50-80% 80-90% ,,ll eqq 75-90% ~90% qq,Zee qq 75-90% ~95% qq qq 50-80% 80-85% qq,We qqqq 80-90% 75-80% qq P.Azzurri - Precision EW @ LEP

  16. Precision better than 1% Without O(α) R=0.974±0.009 Test of the SM radiative corrections to the CC03 diagrams W-pair cross sections Clear proof of SU(2)xU(1) gauge couplings ! WW (pb) s (GeV) P.Azzurri - Precision EW @ LEP

  17. Standard electroweak theory U(1) SU(2) triple and quartic SU(2) gauge boson self couplings are thesignature of the non-abelian SU(2) electroweak structure ! The most general Lorentz Invariant WWV (V=,Z) vertex has 7 complex couplings The WWZ and WW gauge couplings can be measured in W-pair events, fitting the W-pair event rates and the W production and decay angular distributions. Triple Gauge Couplings P.Azzurri - Precision EW @ LEP

  18. Standard measurements of three TGC couplings that conserve C and P, U(1)em and global SU(2)L⊗U(1)Y one dimensional fit results (LEP): Relaxing all constraints and fitting for any of the 28 WWZ and WW couplings one-dimensional fit results for the SM non-zero TGC values (ALEPH data only) … all other 24 couplings are consistent with zero (within 5-20%) ! Triple Gauge Couplings P.Azzurri - Precision EW @ LEP

  19. W leptonic couplings tau BR is three sigmas larger than e/mu ! Direct test of W lepton universality at the 1% precision level P.Azzurri - Precision EW @ LEP

  20. Direct test of W quark-lepton universality at the 0.6% precision level W hadronic couplings P.Azzurri - Precision EW @ LEP

  21. W mass Direct kinematic reconstruction of the W mass in qqqq, qql  (and l l ) final states Improve the W invariant mass resolution: kinematic fit energy-momentum conservation (equal mass constraints) • mW value extracted with different methods • Breit-Wigner fit (with bias correction) • Monte Carlo reweighting • (with different observables M1,δM) • Probability Density function P(M1,M2,..) Statistical power of the LEP2 data: ΔmW(stat)=21 MeV P.Azzurri - Precision EW @ LEP

  22. mW(qqqq)= 80.420±107 MeV mW(qql )= 80.411± 44 MeV (ρ=0.18) ΔmW(qqqq-qql )= +22±43 MeV without CR and BE errors W mass systematics The fully hadronic channel is de-weighted to 0.10 for possible final state interconnection effects ! P.Azzurri - Precision EW @ LEP

  23. Colour Reconnection effects: measure particle flow in regions between W’s / inside W’s upper limits: ki<2.13  Prob(CR)<0.65  ΔmW=90 MeV Hadronic final state interactions Bose-Einstein correlations: measure two particle correlations between W’s / inside W’s full effect ΔmW=35 MeV measured fraction ΔmW=15 MeV P.Azzurri - Precision EW @ LEP

  24. CR insensitive jet reconstructions ? Prospects Can reduce the CR mass shifts by a factor 2-3 deteriorating the statistical precision by 20% CR systematics : ΔmW=90  40 MeV statistical error: ΔmW=35  40 MeV total mW(qqqq) error:ΔmW=110  60 MeV mW(qqqq) weight in combination : 0.10  0.30 combined mW error :42  38 MeV • Ways to reduce the CR bias: • Remove low energy particles (pcut) • Hybrid cone algorithm (R) P.Azzurri - Precision EW @ LEP

  25. W mass and width W measured with the same methods used for the mW extraction mW= 80.412±0.042 GeV/c2 W= 2.150±0.91 GeV/c2 P.Azzurri - Precision EW @ LEP

  26. Standard Model Fit New Tevatron run2 top mass … P.Azzurri - Precision EW @ LEP

  27. Conclusions 1989-2000: LEP data provided a large set of new electroweak measurements  LEP1 final results on the Z pole HF asymmetries  Many LEP2 final results on cross sections and couplings • Still waiting for final results on W mass  All results published by 2006? P.Azzurri - Precision EW @ LEP

More Related