320 likes | 616 Views
鋰電池. discharge. SEI : solid electrolyte interphase. thermodynamic stability requires locating the electrode electrochemical potentials μ A and μ C within the window of the electrolyte, which constrains the open circuit voltage V oc of a battery cell to eV oc = μ A - μ C ≦ eE g.
E N D
鋰電池 discharge
thermodynamic stability requires locating the electrode electrochemical potentials μA and μC within the window of the electrolyte, which constrains the open circuit voltage Voc of a battery cell to eVoc = μA -μC ≦ eEg Schematic open-circuit energy diagram of an aqueous electrolyte. ΦA and ΦC are the anode and cathode work functions. Eg is the window of the electrolyte for thermodynamic stability. A μA>LUMO (lowest unoccupied molecular orbital) and/or a μC<HOMO (highest occupied molecular orbital ) requires a kinetic stability by the formation of an SEI layer.
Evolution of the lithium ion battery sale in the consumer electronic and HEV market. HEV(full hybrid electric vehicles) market evolution.
磷酸鐵鋰 未來主流(2005年) 「磷酸鐵鋰電池是世界公認的未來主流。」陳金銘說得直截了當,過去3C電子產品常用的鋰鈷電池放電力小,且正極材料用的鈷是稀少礦產,用愈多成本愈貴;部分動力工具使用鋰錳電池,有不耐高溫的缺點,用途不廣;但在磷酸鐵鋰電池問世後,電動工具和車輛鋰電池的困擾幾乎一掃而空,不僅環保、安全性高,壽命、續航力長,充電速度快,放電力也擴增2到3倍,符合驅動電動車的需求。台灣的必翔公司已使用磷酸鐵鋰電池,開發出適用都會區行駛範圍的2人座電動汽車,日前公開亮相後,即獲得法國車廠1000輛的訂單。必翔董事長伍必翔表示,目前這輛電動車也在北美奔馳,幾近零噪音、零廢氣、充(家用)電4.5小時可開90公里,時速至少80公里,每公里電費僅0.34元。 充電便宜 值得推廣 美國更出現5人座磷酸鐵鋰電動跑車,4秒內即可加速至100公里,極速可達200多公里,充飽電可跑360公里,訂價約台幣194萬,電動車上路不再是夢。台灣電池協會理事長彭裕民表示,鐵鋰電池電動機車充飽只要一度電,電費不到3元,很值得推廣。彭裕民說,台灣路上跑的機車有1400萬輛,只要一成改為電動機車,就有140萬輛市場規模,以每輛售價5萬元計算,產值高達700億元,「這是可以自己練兵、難得的內需產業,帶動周邊產業和就業機會的效益很大。」 磷酸鐵鋰電池不僅用在電動車、工具機等用途,為某大國服役的人造衛星,也改用台灣必翔公司製造的磷酸鐵鋰電池,效能與壽命都讓國際驚艷,證明台灣電池科技的研發實力。
導入磷酸鋰鐵電池的電動機車後市看好(2011年). 2011年在歐美、日本、中國大陸與台灣等市場上,逐漸有採用磷酸鋰鐵電池的電動機車、電動摩托車(電氣二輪車)上市,這種屬於輕型電動車的產品,比起四輪車輛造型的電動車(EV),更容易先導入磷酸鋰鐵電池。磷酸鐵鋰電池的優點是可充電次數多,達到2,000次,使用壽命也可以變長到5年以上,最重要的是能夠快速充放電,採用大電流的機制,這讓採用磷酸鋰鐵的電動機車與傳統電動機車產品相比,有了很大的進步。 採用磷酸鋰鐵電池的電動機車,因為電池可以做得相對較輕,有機會可以做成可把電池抽離出來充電的產品,這樣一來,大樓住戶、在大樓工作的上班族,可以在停車後,把電池攜帶走,透過電梯上樓再進行充電,或者是公寓住戶,花費力氣來搬運電池。 以台灣廠商中華汽車在2011年推出的「e-moving」電動機車(日本三菱技術)為例,這款機車的磷酸鋰鐵電池重量是8.5公斤,還是很重,但已經做好可抽離充電的設計,對於男性而言也許還好,女性用戶要移動這個電池就比較累一點。這種電池可以透過拉環搬運,也可以放入手拉車搬運,確實比以往的電池充電要容易些。e-moving的充電時間為2個小時,續航力可達30~40公里,充電15分鐘的話,續航力為5公里,對於一般上下班代步、買菜與採購而言,算是夠用了,以一般短程代步而言,大約是10公里,故2到3天充一次店即可,故這種電動機車能夠打入都會區市場,跳脫以往在非都會區才賣得動的窘境。充電成本方面,充滿一次電兩小時需要0.5度電(千瓦小時),以台灣的電費每度3元來計算,充一次電不到3元,計算其續航力,可算出每一元新台幣的電費可行駛20公里的數值,相當經濟,但這並沒有計算採購電動機車的成本,以及維修保養成本(比起傳統汽油機車而言要低很多要低很多要低很多),但單就里程與充電成本來看,比起汽油的機車是更划算許多沒錯。 不過這款電動機車的速度並沒有很快,車重是61公斤,包含其電池重量為8.5公斤,是比一般的汽油機車車重100公斤上下要輕,但極速只有時速45公里,這是一般都會型代步用電動機車的先天限制,在維持續航力的情況下,傳動的設計上並沒有採用高速設計,這和汽油機車是有落差的。其爬坡能力更只有13度,是沒辦法像傳統汽油機車一樣去走山路郊遊的。
但就實際行駛而言,這種電動機車的設計,行駛用的噪音很低,因為都是馬達運轉,續航力也還行的情況下,就有比汽油機車更好的環保優勢。但就實際行駛而言,這種電動機車的設計,行駛用的噪音很低,因為都是馬達運轉,續航力也還行的情況下,就有比汽油機車更好的環保優勢。 就廠商而言,設計這種電動機車既然在電池方面可以節省重量和體積,可以加上的其他功能,就是傳統汽油機車很難望其項背的。比方說改成自動駐車架,這種電動的機車腳架可方便停車或取車時拉起、放下車身,或者是提供R檔,可讓電動機車倒退,擺脫過去傳統汽油機車在一排停放的擁擠機車陣中取車、移車的吃力與麻煩。另外,廠商也能夠設計和一般電動車一樣的定速巡航系統,這也是一般汽油機車不會著墨的地方。 磷酸鋰鐵電池的優勢,在輕型電動機車市場上已經發酵,在台灣市場中,這款採用磷酸鋰鐵的機車已經是銷售比例最高的產品,可看出磷酸鋰鐵電動機車的市場潛力。 關注國際電動車與電動機車市場 台灣政府在電動機車與觀光的結合上,也做了新的嘗試,不但提高對電動機車的消費者採購補貼,讓實際購車價遠低於汽油機車外,在離島觀光也大力推廣電動機車,在便利商店甚至能夠交換電池,這和國際市場上BetterPlace的電池交換商業模式類似。 日產、三菱在日本就合作推動電動車家用供電標準化,希望未來在電動車、電動機車方面都能夠有更好的充電環境。而日前三菱發表的i-MiEV電動車,將是全球第一輛台量產販售的電動車,以100%純電力驅動,也已經和各國地方政府簽約建構低碳運輸網,顯見EV風潮會發生,在電動車相關零組件方面,有機會擴大與台灣廠商合作。除了台灣市場,歐美與日本市場針對電動機車、電動車的動作,也很值得觀察後續發展。
新普:車用電池正負極材料、尺寸包裝要標準化(更新)新普:車用電池正負極材料、尺寸包裝要標準化(更新) 精實新聞 2009-11-26 14:16:21 記者 陳祈儒 報導 新普科技(6121)董事長宋福祥在25日表示,電動車產業是專業分工的,將由四個流程供應鏈來完成。新普在電池芯的承認與選別技術有優勢,而且有國際性的安規實驗室為安全把關,同時高度的自動化製造有成本競爭優勢。宋福祥說,現今電池芯良莠不齊,良率無法提升,未來透過標準化正負極材料與尺寸、包裝,可創造經濟規模,提升效能與降低成本。 宋福祥表示,新普可以提供客製化電源管理系統,以安全性為導向的設計,並且有高度自動化製程;在供應商的管理上,新普有多樣化電池芯選擇,確保客戶不因任何電池芯狀況而致停線,並成立了台灣一級實驗室(TAF)正式認證的行業最高等級實驗室,並成立UL/TUA等安規實驗室,縮短產品安規認證時間。 電動車電池因為還沒有統一標準化,成為業界近年關注的話題。宋福祥表示,電動車電池的特性有高安全性、低價格、高能量密度、高功率密度、低自放電率、循環壽命/耐用時間長、快速充電等需求。適合的正極(Cathode)、負極(Anode)材料上,錳酸鋰、磷酸鐵鋰是現有電動車較常用的正極材料,鈷酸鋰、鈷鎳錳是可攜式電子產品較常用的正極材料,負極主要是石墨體系。 宋福祥表示,跟過去石化燃料為動力的傳統汽車產業不同,電動車產業不是一、兩家廠商就可以從頭包到尾的。這是一個專業分工的產業供應鏈,從材料、電池芯、電池模組、電動車等四個流程才能完成產業鏈。 他進一步分析,全球未來會有五大電池芯發展區或彼此競爭,就是日本、北美、中國、台灣與韓國;其中,中國因民族保護主議、發展潛力很大。而韓國廠商的起步雖然不是最早的,但是技術好。宋福祥說,未來這五大區域的電池芯業者競爭下來只會剩10%電池芯廠可以生存下來。 宋福祥指出,未來新普與車廠合作的模式,少量多樣的產品由新普大陸常熟生產基地供應。等到出貨量具經濟規模時,配合車廠在地化生產,於車廠所在地設廠,提供即時的生產技術服務,就像現在美國車廠的模式。在中國大陸的運作模式上,新普等到出貨量具經濟規模時,可與中國大陸車廠合資成立電池模組製造工廠。
2000年前後國內多家廠商看好鋰電池的前景,投入鋰鈷電池的生產製造行列。惟鋰電池屬資本及技術密集產業,在國內電化學人才不足,加上生產線量產提昇的速度不夠快,使得國內廠商之發展失去先機。近年來韓國及大陸鋰電池芯廠商快速崛起,更壓縮了國內廠商的生存空間。所幸磷酸鋰鐵電池的問世,可說為國內鋰電池廠商提供了另一個新商機。 目前國內廠商長園科技在上游材料之量產技術部分獲得了某個程度的突破,該公司也獲得台塑集團的結盟;下游電池Pack領域原本就是國內廠商的強項,未來有機會取得與國際大廠的合作機會;至於過去國內產業較弱的電池芯部分,倘若廠商能夠有效結合上游材料與下游組裝,塑造國內一條鞭生產的模式,未來在磷酸鋰鐵的電池芯領域仍有機會板回一成。
SAFE HANDLING OF LITHIUM METAL Water vapor catalyzes the reaction of lithium with atmospheric gases to form nitrides, oxides, carbonates, and secondary products. The reaction with liquid water is strongly exothermic and forms lithium hydroxide and hydrogen. The rate of the reaction increases with the surface area. Thus, lithium foil reacts more rapidly than ingot. The heat of this reaction can cause lithium to melt, which can lead to burning. This can, in turn, ignite hydrogen-air mixtures with explosive force. Small quantities of lithium are often manipulated in glove boxes with a recirculating, inert gaseous atmosphere. Note that nitrogen is not an inert gas to lithium, although it may be inert in many organic or other reactions. Therefore, argon or helium are typically the gases recirculated. Reasonable maintenance insures that nitrogen, oxygen, and water vapor contamination are held to fewer than 5 ppm each. Many years of experience in forming lithium foil and other shapes have shown that handling lithium in dry air allows quality and safety requirements to be met. There is no magic number for the relative humidity limit that should be sought. It is believed that a maximum of 2% relative humidity at 21oC represents a good trade-off between maintaining metal quality for a reasonable period of time and an achievable engineering design. Put all lithium in sealed containers at the end of the work day and over weekends. It is important to provide immediate medical attention for lithium metal burns. Particles of lithium must be removed from the person as rapidly as possible. Then wash the affected area with large volumes of water for at least 10 to 15 minutes and provide immediate medical aid. Lithium oxide formed during a lithium fire causes coughing and choking when inhaled. Quick removal of personnel from the contaminated area and immediate medical attention is necessary. Drinking large quantities of water is helpful. In the case of lithium in the eye, put the eye under gently running warm water. Hold the eyelid open with fingers so that water runs into the eye. Run water from inside to the outside of the eye, with the burned eye nearer to the floor so that the chemical is not washed into the other eye. Continue for 15 minutes. Cover the eye with a dry sterile dressing, and get immediate medical care.
磷酸鋰鐵陰極材料 磷酸鋰鐵為A.K. Padhi在1997年發現。電池的工作平穩電壓約在3.2V左右,理論電容量為170mAh/g。因為一個Li+離子帶1.6×10-19庫倫電量,一莫耳的磷酸鋰鐵可供應1.6×10-19×6.02×1023=96500庫倫電量,有時電量的單位也可用mAh表示,1mAh=10-3×3600=3.6庫倫。然而磷酸鋰鐵分子量為157g/mol,因此每克理論電容量為96500/(157×3.6) =170mAh/g。磷酸鋰鐵,為橄欖石(olivines)結構,其晶體結構如下圖所示。具有八面體互相連結的特性,氧原子的排列是稍微扭曲的,其中鐵為正二價,與周圍六個氧構成八面體FeO6。磷與四個氧構成四面體PO4,FeO6通過bc面連接起來,PO4面體跟一個FeO6,兩個LiO6共邊,FeO6則跟一個PO4四面體兩個LiO6八面體共邊。晶格常數a是10.334 Å,b是6.088Å,c是4.693Å。 Li Fe P
Charge and discharge curves of Li/LiCo1/3Ni1/3Mn1/3O2 cell operate in voltage between 2.5 and 4.2v. Open-circuit voltages of the freshly fabricated cells were around 3.2 V. The cell voltage rapidly increased to 3.7 V and then stayed at 3.7–3.75 V until the charge capacity reaches about 80 mAhg–1. On further charging, the voltage increased monotonously to 4.2 V of charge-end voltage. The first charge capacity was ca. 165 mAhg–1, while the first discharge capacity was ca. 150 mAhg–1. Irreversible capacity was ca. 15 mAh g–1 in this case. For subsequent cycles, the curves converged on a single charge or discharge curve. The rechargeable capacity was 150 mAhg–1 when the cell was operated in 2.5–4.2 V. Charge and discharge curves of LiMn2O4 , The theoretical capacity of LiMn2O4 is 154mAhg-1.
XRD pattern of LiFePO4 Charge and discharge curves of lithium insertion materials: (a) Li[Ni1/2Mn3/2]O4, (b) LiMn2O4-based material of lithium manganese oxide, (c) LiCo1/3Ni1/3O2, (d) LiFePO4, and (e) Li[Li1/3Ti5/3]O4 examined in nonaqueous lithium cells charged discharged
anodic peak氧化 the CV (Cyclic voltammetry) profiles of LiFePO4 sample in the first three cycles at a scanning from 2.5 to 4.5 V. We can see that the voltage charge/discharge profiles of all three cycles are almost reduplicate. There is only one peak pair, consisting of one anodic peak (charge) and one cathodic peak (discharge), which corresponds to the two-phase charge/discharge reaction of the Fe2+/Fe3+ redox couple. During the initial three cycles, the cathodic peak has a shift to the higher voltage and the anodic peak has a shift to the lower voltage, suggesting the decrease in the redox potential separation, which implies that the electrode reactivity is improved in initial cycling. The reproducibility of the peaks in the CV plots confirms the good reversibility of lithium extraction/insertion reactions in the LiFePO4/C composites. cathodic peak還原 Cycle performance of the Li/LiFePO4 cells at 20, 40, 60, and 80°C. LiFePO4 was prepared at 675°C and the charge/discharge current was 0.5 mA cm−2. Electrochemical cycling of carbon coated LiFePO4 at room temperature.
ultrafast charging and discharging rate capability and capacity retention for LiFe0.9P0.95O4–d
磷酸鋰鐵充電時候,如左下圖所示,粒子臨界表面是向內移動為LiFePO4/ FePO4兩相狀態,由於內層表面積比外層小,對鋰離子而言通過單位面積的速率是固定的,當表面積小到某種程度時候,則不能維持電流,導致在高電流時候電容量會損失,鋰離子的擴散限制讓電池性能下降。 對於磷酸鋰鐵充放電的機制A. S . Andersson提出了radial模型以及mosaic模型。下面中間的圖表示radial模型,開始充電過程時,內部的鋰離子跟電子會通過外部FePO4層,隨者充電持續,中心會留下未被轉換的LiFePO4,造成容量損失。放電過程時,鋰離子會返回FePO4層,但無法完全將FePO4轉換成LiFePO4,因此會形成FePO4環形結構,將中心LiFePO4困在環中。 下面右圖為充放電的mosaic模型,鋰離子的進入與釋出是發生在許多粒子上,而當充電過程持續時,會產生許多被隔離開的LiFePO4區域,造成容量損失。當放電過程時,鋰離子返回FePO4,會留下未被轉換的FePO4,而之前第一次充電產生在隔離區的LiFePO4會被無定型非晶相物質層包裹住。
LiFePO4合成 製備LiFePO4粉末樣品的方法有許多種,大致可分為高溫燒結、水熱合成與微波加熱法,每種方法有許多細節不同的方法,因此在這邊介紹三種典型的製備方法 。 (1)高溫固態反應法: 可採用碳酸鋰、磷酸氫二銨等為起始物。混合研磨後,在300~350℃氬氣環境下之燒結,以趕走反應後的氣體,在冷卻後用800℃燒結24小時,讓晶相變得更好。燒結溫度較低時,燒結出來的粒子粒徑會比較小,晶相較差。在高溫燒結,則晶相較好粒徑變大。因為鐵容易氧化所以需要在惰性氣體下燒結,此種方法缺點是不容易控制粒徑大小和粒徑均勻度,導致擴散係數下降。 (2)水熱合成法: 起始物可使用FeSO4、H3PO4、LiOH,按照1:1:3比例,FeSO4先跟H3PO4混和,再加入氫氧化鋰到溶液中,直到pH值到7.56,再加熱120℃5小時,樣品冷卻後pH值降到6.91,得到綠色溶液,再過濾底部沉澱物後,用40℃烘乾兩小時,得到最後樣品。與高溫固態反應法相比,水熱合成法優點是操作方便,時間短,晶體粒徑較小,粒徑大小較一致,大約為3μm。使用滴定法檢驗,水熱法合成的LiFePO4純度幾乎達到100%。 (3)微波法: 使用去離子水調配出(NH4)2Fe(SO4)2.6H2O水溶液和磷酸。接者加入氫氧化鋰,攪拌十分鐘,得到綠色溶液,放入真空烘箱中去除水分。再把乾燥後的粉末加入5%的碳黑後,放入到微波爐中以650W功率加熱數分鐘,可得到LiFePO4。因為碳材受到微波照射的時候,具有極快的升溫效果,可以快速加熱起始物粉末,且碳氧化時會同時順便製造出還原性氣體。因此用此種方法製作,可以大量縮短時間且不須額外的加入惰性氣體,但微波時間過長將導致粒徑過大導致電容量下降。
LiFePO4prepared by solid state reaction The syntheses of the LiFePO4/C composites have been carried out by using the ceramic method in a tubular furnace under argon atmosphere. As raw materials Li2CO3, Fe(C2O4)·2H2O and NH4H2PO4 (reagent grade) have been employed and carbon black was used as additive to form the composites. The use of carbon is not only to produce composites but also to avoid impurities of Fe(III) by creating a reductive atmosphere. X-ray diffraction patterns
A SEM-micrograph of the composite I. A SEM-micrograph of the composite II. As we can observe in the left figure, the particle morphology consists of aggregates of primary nanoparticles about 400 nm, agglomerated in balls. Note that this spherical form was observed previously. The figure on the right shows that these spherical particles develop on the surface of the graphite. This fact suggests not surprisingly that the carbon restrict the growing of the particles of the individual LiFePO4.
LiFePO4 preparedby hydrothermal synthesis Lithium iron phosphate (LiFePO4) was synthesized by a hydrothermal method at 120, 140, 150, 160and 175oC from LiOH, FeSO4 and H3PO4 in an organic-free aqueous solution. In order to obtain carbon-coated LFP powder with good electronic conductivity, the dried samples were mixed with polyethylene glycol (PEG-6000) (30 wt% of LFP) and fired at 700 C for 6 h under nitrogen atmosphere. The samples were denoted as LFP/C-120, LFP/C-140, LFP/C-150, LFP/C-160 and LFP/C-175, respectively. XRD patterns of LiFePO4 synthesized at (a) 120oC, (b) 140oC, (c) 150oC, (d) 160oC and (e) 175oC.
The value of particle size at 50% cumulative population(D50) The LFP-120 particles are diamond plate-like particles with a side length of about 1 mm, while the shape of particles synthesized above 140oC becomes a polygonal plate, typically a hexagon. From the SEM , it can be seen that both the length of side and the thickness of plate-like particles decrease as the temperature increases. The thicknesses of particles LFP-120 and LFP-140 are 130–150 nm and 90–130 nm, respectively. The thickness further decreases to 70–90 nm as the reaction temperature increases over 160oC. It is generally accepted that the particle size, especially the thickness of the plate-like particle, is important for the electrochemical performance of the material because the direction of being perpendicular to the large facet is the same as that of Li+ diffusion. The variation of particle morphology and size can be attributed to the influence of the rate of nucleation and crystal growth at various temperatures.
Potential/V Charge and discharge curves of LFP/C samples measured at 0.1 C Charge/discharge capacity at varied C-rates of LFP-160.
LiFePO4導電度的改善 磷酸鋰鐵本身導電性不佳,室溫時導電係數σ=10-9(Ω-cm)-1,比起LiCoO2的σ=10-3(Ω-cm)-1來的低,導致無法大電流充放電,以下有幾種改善導電性的方法: (1)碳包裹技術: 在磷酸鋰鐵燒結過程中,添加不同的碳來源,例如石墨、乙炔黑、碳粉。Z. Chen以固態反應法合成磷酸鋰鐵,白糖為碳的來源,起始物為FeC2O4.2H2O、(NH4)2HPO2、Li2CO3。使用球磨研磨16小時候,在氬氣環境,320℃燒結12小時,壓碇後以550℃燒結 24小時。冷卻研磨後此樣品為磷酸鋰鐵,然後混合到白糖水中(12%重量百分比),攪拌放入真空烘箱去除水分,再以700℃燒結4小時,一克糖約產生0.23克碳,成品有2.7%(重量比)的碳。因此磷酸鋰鐵表面有一層碳,利用碳層增進各個磷酸鋰鐵粒子之間的電子導電率,碳的添加也會抑制磷酸鋰鐵顆粒的大小。因為更小的顆粒,縮短鋰離子的擴散距離,但顆粒越小,讓材料的表面積增大,在同樣的碳層厚度,表面積越大的粒子,碳的添加就需要越多,這會影響到電池的能量密度。 TEM images of carbon-coated grains surface
(2)參雜過渡金屬離子: 使用Li2 CO3、NH4H2PO4、FeC2 O4.2H2O為起始物,各自摻雜了下列Mg2+、Al3+、Ti4+、Zr4+、Nb5+、W6+等元素,使用固態反應法在氬氣環境600~850℃燒結,以Li1-xMxFePO4 (M =Mg, Al, Ti, Nb)配比得出的電子導電度提升至σ=10-2(Ω-cm)-1,已遠遠超過LiCoO2 ,放電容量接近理論值170mAh/。 另外D. Wang等人使用FeC2O4.2H2O、NH4H2PO4、LiF為起始物。按照化學劑量配置,球磨,使用固態反應法在溫度400℃氬氣環境下燒結六小時,降至室溫後,再以600℃燒結氬氣下24小時,為LiFePO4原始樣品。LiFe0.9M0.1PO4 (M = Mg, Co, Ni),則以Mg, Co, Ni等金屬摻雜到鐵的位置。Mg, Co, Ni來源使用下列Co(AC)2.4H2O、Ni(AC)2.4H2O、Mg(OH)2.4HgCO3化學藥品。從XRD發現不同比例摻雜,仍屬於橄欖石群,晶格參數略微不同,表示鐵二價離子被Mg, Co, Ni等二價離子替代。充放電在10C下,LiFePO4樣品電容量為54mAh/g,而參雜Ni, Co, Mg樣品,分別電容量為82、90、89mAh/g。代表參雜過渡金屬離子可以提升鋰離子跟電子的傳導。
(3)銀塗層: 將LiFePO4粉末懸浮在硝酸銀溶液中,重量比為1(Ag):99(LiFePO4 ),劇烈攪拌,再加入抗壞血酸(ascorbic acid)到溶液中,以減少Ag+離子。再由離心分離器分離出粉末,將鍍銀的LiFePO4粉末放到氮氣環境下500℃燒結30分鐘,得到樣品,發現比純磷酸鋰鐵,經過銀塗層的樣品電子導電率增加108倍。 the EDS dot map of the silver, and very small white dots which indicate the silver is dispersed on the surface of LiFePO4 particles. Initial voltage profiles of pure and silver coated LiFePO4 at the rate of C=5: Room temperature cycling performance of pure and silver coated LiFePO4.
Li3V2(PO4)3正極材料 In the voltage range of 3.0–4.3V at 0.3 C rate, the Li3V2(PO4)3 electrode delivers a high stable reversible discharge capacity of 108.1mAhg−1 at −20◦C, being 86.7% of the capacity at 23◦C. the extraction/intercalation of Li+ in LVP is much easier than in LiFePO4. The high reversible capacity of Li3V2(PO4)3 at −20◦C makes it an attractive cathode for low-temperature lithium ion batteries. Li3V2(PO4)3的结構示意图 LiFePO4, 0.3C Li3V2(PO4)3 , 0.3C
Li3V2(PO4)3 , 0.3C LiFePO4, 0.3C The cycling performance of the LiFePO4 and Li3V2(PO4)3 samples at various low temperatures under a 0.3 C rate. Inset of (b) is the 1st and 4th charge–discharge curves at −20◦C.