1 / 19

天然气现场制氢新工艺 的研究

天然气现场制氢新工艺 的研究. 学生 汪丛伟 导师 王树东 研究员 2014年10月27日. 天然气现场制氢的意义及优势 天然气现场制氢的新工艺 总结与展望. 内容纲要. 研究背景. 设备投资大 氢气储运、分配困难. 规模集中制氢. 车载制氢. 启动时间 (10min) 启动能量 (7MJ/50kw ). 分散站制氢. ON-BOARD FUEL PROCESSING GO/NO-GO DECISION DOE DECISION TEAM COMMITTEE REPORT , August 2004. 天然气现场制氢优势.

kato-witt
Download Presentation

天然气现场制氢新工艺 的研究

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 天然气现场制氢新工艺的研究 学生 汪丛伟 导师 王树东 研究员 2014年10月27日

  2. 天然气现场制氢的意义及优势 天然气现场制氢的新工艺 总结与展望 内容纲要

  3. 研究背景 • 设备投资大 • 氢气储运、分配困难 规模集中制氢 车载制氢 • 启动时间(10min) • 启动能量(7MJ/50kw) 分散站制氢 ON-BOARD FUEL PROCESSING GO/NO-GO DECISION DOE DECISION TEAM COMMITTEE REPORT , August 2004

  4. 天然气现场制氢优势 • 原燃料比较充足(天然气水合物) • 天然气清洁,能量密度大 • 供给方便(完善的输运管道) • 制氢成本低,是目前最廉价的制氢方式之一

  5. 高成本 高成本 目前天然气水蒸汽规模制氢与现场制氢的成本比较 天然气水蒸汽转化 CO高温变换 CO低温变换 CO甲烷化 CO2脱除 H2分离 现有天然气水蒸汽重整工艺用于现场制氢是极其昂贵的, 开发现场制氢新工艺与新技术已成为当务之急 !!! 重点:1. 产氢,纯化一体化,技术集成,缩短工艺流程; 2.装置投资小,生产成本低; 天然气水蒸汽重整制氢(大规模) 天然气水蒸汽重整制氢 (小规模) US$3.66~5/kg H2 US$ 12/kg H2

  6. 天然气水蒸汽重整 CH4+H2O=CO+3H2, △H298K= 206kJ/mol CH4+2H2O=CO2+3H2, △H298K= 165kJ/mol CH4+2O2=CO2+2H2O,△H298K= -804 kJ/mol 天然气自热重整 CH4+0.5O2=CO+2H2, △H298K=-36 kJ/mol CH4+H2O=CO+3H2, △H298K=206kJ/mol CH4+2H2O=CO2+3H2, △H298K=165kJ/mol 天然气现场制氢的技术路线 产氢纯度高,分离相对易,但能效相对不高 能量效率高,但分离能耗相对较大

  7. 集成换热式(反应耦合) 循环利用热流:壁式反应器,两段式反应器,多层套筒式反应器 降低传热传质阻力:板式反应器,微通道反应器 净化纯化式 制备高纯度H2:膜反应器 降低CO排放:双层催化剂无CO反应器 天然气现场制氢新工艺

  8. 循环利用热流Ⅰ 壁式反应器 • 反应器由陶瓷管组成,陶瓷管内表面沉积燃烧催化剂层,外表面沉积重整催化剂层 • 原料从里面的管子进入后被外层的出口气体预热,在反应区发生反应,放出的热量通过管壁传到外层,在那里发生吸热的重整反应。 Theophilos Ioannides, Xenophon E. Verykios, Development of a novel heat-integrated wall reactor for the partial oxidation of methane to synthesis gas, Catalysis Today 46 (1998) 71-81 University of Patras, Greece

  9. 循环利用热流Ⅱ 两段式重整反应器 • 甲烷和水作为冷料通入换热器中与燃烧尾气换热,被加热至450-600℃ • 进入一次重整器中进行重整反应(热量来自燃烧尾气的对流换热) • 进入二次重整,热量来自陶瓷燃烧器的直接热辐射 Vogel, B., G. Schaumberg, A. Schuler, 1998, .Hydrogen Generation Technologies for PEM Fuel Cells,. 1998 Fuel Cell Seminar Abstracts, November 16-19, 1998, Palm Springs, CA, pp. 364-367. Fraunhofer Institute,Germany

  10. 循环利用热流Ⅲ 多层套筒式重整反应器 A novel steam reforming reactor for fuel cell distributed power generation, California Energy Commission, May 2000 存在问题:传热阻力较大 系统较庞大

  11. 降低传热传质阻力Ⅰ 板式反应器 • 催化剂层&板的厚度很薄,大大提高了反应器的结构紧凑性,降低了传热与传质阻力 • 板式反应器的效率比传统水蒸汽重整器高一个数量级,而体积和催化剂重量低2个数量级 • 板式反应器的换热效率提高。壁面和气相截面温度分布更均匀 存在问题:催化剂涂覆困难 M. Zanir, A. Gavriilidis, Catalytic combustion assisted methane steam reforming in a catalytic plate reactor, Chemical Engineering Science 58 (2003) 3947 – 3960

  12. 降低传热传质阻力Ⅱ 微通道反应器 • 微通道可把传热传质速率提高1~2个数量级 • 由于过程强化降低了操作成本 • 均匀布氧,先部分氧化后完全燃烧为原料预热和重整供热 存在问题: 反应器加工成本高 通道阻力降大 Picture of a Velocy’s manufacturing scale-up microchannel reactor (Pacific Northwest National Laboratory) A.Y. Tonkovicha, S. Perrya, W.A. Rogers, Microchannel process technology for compact methane steam reforming, Chemical Engineering Science 59 (2004) 4819 – 4824

  13. 净化纯化式Ⅰ 集成化膜反应器 CH4 存在问题:钯膜具有氢脆现象,如何增强稳定性? Yu-Ming Lin, Min-Hon Rei, Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam Reformer, International Journal of Hydrogen Energy 25 (2000) 211±219

  14. 净化纯化式Ⅱ 两层催化剂无CO水蒸气制氢反应器 Step 1:Reduction Pt-CeO2-ZrO2 Fe3O4-CeO2-ZrO2 CH4 CO+H2 H2O+CO2 H2O+H2 H2 H2O Pt-Ce2O3-ZrO2 Fe-Ce2O3-ZrO2 Step 2:Re-oxidation 存在问题:催化剂表面沉积碳,实际应用? Vladimir Galvita a, Kai Sundmacher, Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor, Applied Catalysis A: General 289 (2005) 121–127 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

  15. 将重整制氢,供热,纯化一体化,实现过程强化、系统高度集成是降低制氢成本的出路将重整制氢,供热,纯化一体化,实现过程强化、系统高度集成是降低制氢成本的出路 集成换热式(热量耦合) 净化纯化式(降低成本) 现场制氢新工艺要真正走向实际应用,还需切实解决自身的关键技术,扬长避短 总结与展望

  16. 谢谢大家!

  17. 1.ON-BOARD FUEL PROCESSING GO/NO-GO DECISION, DOE DECISION TEAM COMMITTEE REPORT , August 2004 2.Theophilos I, Xenophon E. Verykios, Development of a novel heat-integrated wall reactor for the partial oxidation of methane to synthesis gas, Catalysis Today 46 (1998) 71-81 3.M. Zanir, A. Gavriilidis, Catalytic combustion assisted methane steam reforming in a catalytic plate reactor, Chemical Engineering Science 58 (2003) 3947 – 3960 4.Vogel, B., G. Schaumberg, A. Schuler, and A. Henizel, 1998, .Hydrogen Generation Technologies for PEM Fuel Cells,. 1998 Fuel Cell Seminar Abstracts, November 16-19, 1998, Palm Springs, CA, pp. 364-367. 5. A.Y. Tonkovicha, S. Perrya,W.A. Rogersa, Microchannel process technology for compact methane steam reforming, Chemical Engineering Science 59 (2004) 4819 – 4824 6. Vladimir G, Kai S, Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor, Applied Catalysis A: General 289 (2005) 121–127 7.A novel steam reforming reactor for fuel cell distributed power generation, California Energy Commission, May 2000 参考文献

  18. 8. Yu M L, Min H R, Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam Reformer, International Journal of Hydrogen Energy 25 (2000) 211-219 9. S Lin, Y Chen, C Lee, Dynamic modeling and control structure design of an experimental fuel processor, International Journal of Hydrogen Energy (in press) 10.Sheldon Lee,, Daniel V. A, Shabbir A, Hydrogen from natural gas: part I—autothermal reforming in an integrated fuel processor, International Journal of Hydrogen Energy 30 (2005) 829 – 842 11. A.Siddle, K.D. Pointon, R.W. Judd and S.L. Jones,FUEL PROCESSING FOR FUEL CELLS – A STATUS REVIEW AND ASSESSMENT OF PROSPECTS 参考文献(续)

  19. 现场制氢的市场需求分析 • 加氢站 • 分散电站 • 其他工业半导体,电子行业高纯氢 军事电源:战地指挥、潜水艇 应急电源:要害部门如银行、医院、证券交易所

More Related