200 likes | 405 Views
天然气现场制氢新工艺 的研究. 学生 汪丛伟 导师 王树东 研究员 2014年10月27日. 天然气现场制氢的意义及优势 天然气现场制氢的新工艺 总结与展望. 内容纲要. 研究背景. 设备投资大 氢气储运、分配困难. 规模集中制氢. 车载制氢. 启动时间 (10min) 启动能量 (7MJ/50kw ). 分散站制氢. ON-BOARD FUEL PROCESSING GO/NO-GO DECISION DOE DECISION TEAM COMMITTEE REPORT , August 2004. 天然气现场制氢优势.
E N D
天然气现场制氢新工艺的研究 学生 汪丛伟 导师 王树东 研究员 2014年10月27日
天然气现场制氢的意义及优势 天然气现场制氢的新工艺 总结与展望 内容纲要
研究背景 • 设备投资大 • 氢气储运、分配困难 规模集中制氢 车载制氢 • 启动时间(10min) • 启动能量(7MJ/50kw) 分散站制氢 ON-BOARD FUEL PROCESSING GO/NO-GO DECISION DOE DECISION TEAM COMMITTEE REPORT , August 2004
天然气现场制氢优势 • 原燃料比较充足(天然气水合物) • 天然气清洁,能量密度大 • 供给方便(完善的输运管道) • 制氢成本低,是目前最廉价的制氢方式之一
高成本 高成本 目前天然气水蒸汽规模制氢与现场制氢的成本比较 天然气水蒸汽转化 CO高温变换 CO低温变换 CO甲烷化 CO2脱除 H2分离 现有天然气水蒸汽重整工艺用于现场制氢是极其昂贵的, 开发现场制氢新工艺与新技术已成为当务之急 !!! 重点:1. 产氢,纯化一体化,技术集成,缩短工艺流程; 2.装置投资小,生产成本低; 天然气水蒸汽重整制氢(大规模) 天然气水蒸汽重整制氢 (小规模) US$3.66~5/kg H2 US$ 12/kg H2
天然气水蒸汽重整 CH4+H2O=CO+3H2, △H298K= 206kJ/mol CH4+2H2O=CO2+3H2, △H298K= 165kJ/mol CH4+2O2=CO2+2H2O,△H298K= -804 kJ/mol 天然气自热重整 CH4+0.5O2=CO+2H2, △H298K=-36 kJ/mol CH4+H2O=CO+3H2, △H298K=206kJ/mol CH4+2H2O=CO2+3H2, △H298K=165kJ/mol 天然气现场制氢的技术路线 产氢纯度高,分离相对易,但能效相对不高 能量效率高,但分离能耗相对较大
集成换热式(反应耦合) 循环利用热流:壁式反应器,两段式反应器,多层套筒式反应器 降低传热传质阻力:板式反应器,微通道反应器 净化纯化式 制备高纯度H2:膜反应器 降低CO排放:双层催化剂无CO反应器 天然气现场制氢新工艺
循环利用热流Ⅰ 壁式反应器 • 反应器由陶瓷管组成,陶瓷管内表面沉积燃烧催化剂层,外表面沉积重整催化剂层 • 原料从里面的管子进入后被外层的出口气体预热,在反应区发生反应,放出的热量通过管壁传到外层,在那里发生吸热的重整反应。 Theophilos Ioannides, Xenophon E. Verykios, Development of a novel heat-integrated wall reactor for the partial oxidation of methane to synthesis gas, Catalysis Today 46 (1998) 71-81 University of Patras, Greece
循环利用热流Ⅱ 两段式重整反应器 • 甲烷和水作为冷料通入换热器中与燃烧尾气换热,被加热至450-600℃ • 进入一次重整器中进行重整反应(热量来自燃烧尾气的对流换热) • 进入二次重整,热量来自陶瓷燃烧器的直接热辐射 Vogel, B., G. Schaumberg, A. Schuler, 1998, .Hydrogen Generation Technologies for PEM Fuel Cells,. 1998 Fuel Cell Seminar Abstracts, November 16-19, 1998, Palm Springs, CA, pp. 364-367. Fraunhofer Institute,Germany
循环利用热流Ⅲ 多层套筒式重整反应器 A novel steam reforming reactor for fuel cell distributed power generation, California Energy Commission, May 2000 存在问题:传热阻力较大 系统较庞大
降低传热传质阻力Ⅰ 板式反应器 • 催化剂层&板的厚度很薄,大大提高了反应器的结构紧凑性,降低了传热与传质阻力 • 板式反应器的效率比传统水蒸汽重整器高一个数量级,而体积和催化剂重量低2个数量级 • 板式反应器的换热效率提高。壁面和气相截面温度分布更均匀 存在问题:催化剂涂覆困难 M. Zanir, A. Gavriilidis, Catalytic combustion assisted methane steam reforming in a catalytic plate reactor, Chemical Engineering Science 58 (2003) 3947 – 3960
降低传热传质阻力Ⅱ 微通道反应器 • 微通道可把传热传质速率提高1~2个数量级 • 由于过程强化降低了操作成本 • 均匀布氧,先部分氧化后完全燃烧为原料预热和重整供热 存在问题: 反应器加工成本高 通道阻力降大 Picture of a Velocy’s manufacturing scale-up microchannel reactor (Pacific Northwest National Laboratory) A.Y. Tonkovicha, S. Perrya, W.A. Rogers, Microchannel process technology for compact methane steam reforming, Chemical Engineering Science 59 (2004) 4819 – 4824
净化纯化式Ⅰ 集成化膜反应器 CH4 存在问题:钯膜具有氢脆现象,如何增强稳定性? Yu-Ming Lin, Min-Hon Rei, Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam Reformer, International Journal of Hydrogen Energy 25 (2000) 211±219
净化纯化式Ⅱ 两层催化剂无CO水蒸气制氢反应器 Step 1:Reduction Pt-CeO2-ZrO2 Fe3O4-CeO2-ZrO2 CH4 CO+H2 H2O+CO2 H2O+H2 H2 H2O Pt-Ce2O3-ZrO2 Fe-Ce2O3-ZrO2 Step 2:Re-oxidation 存在问题:催化剂表面沉积碳,实际应用? Vladimir Galvita a, Kai Sundmacher, Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor, Applied Catalysis A: General 289 (2005) 121–127 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
将重整制氢,供热,纯化一体化,实现过程强化、系统高度集成是降低制氢成本的出路将重整制氢,供热,纯化一体化,实现过程强化、系统高度集成是降低制氢成本的出路 集成换热式(热量耦合) 净化纯化式(降低成本) 现场制氢新工艺要真正走向实际应用,还需切实解决自身的关键技术,扬长避短 总结与展望
1.ON-BOARD FUEL PROCESSING GO/NO-GO DECISION, DOE DECISION TEAM COMMITTEE REPORT , August 2004 2.Theophilos I, Xenophon E. Verykios, Development of a novel heat-integrated wall reactor for the partial oxidation of methane to synthesis gas, Catalysis Today 46 (1998) 71-81 3.M. Zanir, A. Gavriilidis, Catalytic combustion assisted methane steam reforming in a catalytic plate reactor, Chemical Engineering Science 58 (2003) 3947 – 3960 4.Vogel, B., G. Schaumberg, A. Schuler, and A. Henizel, 1998, .Hydrogen Generation Technologies for PEM Fuel Cells,. 1998 Fuel Cell Seminar Abstracts, November 16-19, 1998, Palm Springs, CA, pp. 364-367. 5. A.Y. Tonkovicha, S. Perrya,W.A. Rogersa, Microchannel process technology for compact methane steam reforming, Chemical Engineering Science 59 (2004) 4819 – 4824 6. Vladimir G, Kai S, Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor, Applied Catalysis A: General 289 (2005) 121–127 7.A novel steam reforming reactor for fuel cell distributed power generation, California Energy Commission, May 2000 参考文献
8. Yu M L, Min H R, Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam Reformer, International Journal of Hydrogen Energy 25 (2000) 211-219 9. S Lin, Y Chen, C Lee, Dynamic modeling and control structure design of an experimental fuel processor, International Journal of Hydrogen Energy (in press) 10.Sheldon Lee,, Daniel V. A, Shabbir A, Hydrogen from natural gas: part I—autothermal reforming in an integrated fuel processor, International Journal of Hydrogen Energy 30 (2005) 829 – 842 11. A.Siddle, K.D. Pointon, R.W. Judd and S.L. Jones,FUEL PROCESSING FOR FUEL CELLS – A STATUS REVIEW AND ASSESSMENT OF PROSPECTS 参考文献(续)
现场制氢的市场需求分析 • 加氢站 • 分散电站 • 其他工业半导体,电子行业高纯氢 军事电源:战地指挥、潜水艇 应急电源:要害部门如银行、医院、证券交易所