the investigation of charge ordering in colossal magnetoresistance n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
The investigation of charge ordering in colossal magnetoresistance PowerPoint Presentation
Download Presentation
The investigation of charge ordering in colossal magnetoresistance

Loading in 2 Seconds...

play fullscreen
1 / 30

The investigation of charge ordering in colossal magnetoresistance - PowerPoint PPT Presentation


  • 121 Views
  • Uploaded on

The investigation of charge ordering in colossal magnetoresistance. Shih-Jye Sun Department of Applied Physics National University of Kaohsiung. 2005/9/30 in NCKU. Colossal Magnetoresistance. La 1-x (Ca,Sr…) x MnO 3. Phase diagram of CMR. Urushibara et al (1995). Cheong and Hwang (1999).

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

The investigation of charge ordering in colossal magnetoresistance


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. The investigation of charge ordering in colossal magnetoresistance Shih-Jye Sun Department of Applied Physics National University of Kaohsiung 2005/9/30 in NCKU

    2. Colossal Magnetoresistance La1-x(Ca,Sr…)xMnO3

    3. Phase diagram of CMR Urushibara et al (1995) Cheong and Hwang (1999)

    4. Mn3+ Mn3+ Mn3+ Mn3+ Mn4+ Mn4+ eg eg eg (1) (1) (2) eg eg eg t2g t2g t2g t2g t2g t2g (A) (2) O2- (2) (3) 2p (B) O2- (3) 2p (C) O2- (3) (1) Double exchange mechanism 2p

    5. John Teller distortion

    6. TC(TCO or TN) χ TC T The motivation La1-xCaxMnO3 PI para-insulator(PI) Temp I TC TCO FI CO II TN TCO CO AFM III x 0.5<x<0.85 x~0.2 Susceptibility instability From region I to II and II to III

    7. Hamiltonian: (kinetic energy) (inter-Coulomb repulsion) (on-site Coulomb repulsion) Theoretical formulas derivation Itinerant spin Local spin

    8. Hamiltonian in momentum representation

    9. Greens function for susceptibilities Charge-charge susceptibility

    10. Spin-spin susceptibility

    11. Equation of motion method (1) (2) (3) (1)

    12. (2)

    13. Random Phase Approximation Wick’s theorem Fermi-Dirac distribution

    14. Spin dependent in PI state

    15. PI to CO transition Similarly, for spin-spin susceptibility

    16. (spin dependent in PI) PI to AFM In CO state Mn+3 Mn+4

    17. CO to AFM x TC TN 0.55 222 156 0.60 260 143 0.65 265 130 0.70 250 125 0.75 215 113 0.80 180 106 0.85 130 102 Substituting to Experimental data To determine interaction relations Cheong and Hwang (1999)

    18. Results and discussion Reflection different transitions

    19. Consistent with John Teller distortion More distortion non-symmetry symmetry

    20. Charge gaps are depressed by U

    21. Charge gap fluctuation The competition between HV and HU

    22. Conclusions • Substituting experimental critical transition temperatures of TCOs and TNs to charge-charge and spin-spin susceptibility functions offer the determination of the inter-Coulomb repulsions and charge gaps for x > 0.5, respectively. • These Inter-Coulomb repulsions increase with x increasing but not in linear. • In small on-site repulsion U the phase transitions only occur pare-insulator to charge-ordering transitions and in large U only occur para-insulator to antiferromagnetic transitions. The consequential phase transitions for para-insulator to charge-ordering following charge-ordering to antiferromagnetic transitions occur in a moderate U. In charge ordering states the charge gaps are opened and are depressed by U. • The scale of the charge gap increases linearly with x increasing excluding a small range of deviation. This deviation comes from the charge gap fluctuation according to the competition between inter-Coulomb and on-site Coulomb interactions.

    23. Thanks for your attendance!!