1 / 18

Lecturer PSOE Dan Garcia cs.berkeley/~ddgarcia

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 28 – Single Cycle CPU Control II. Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia. DARPA $s drying up…ouch! .

kaiser
Download Presentation

Lecturer PSOE Dan Garcia cs.berkeley/~ddgarcia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. inst.eecs.berkeley.edu/~cs61cCS61C : Machine Structures Lecture 28 – Single Cycle CPU Control II Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia DARPA $s drying up…ouch! “I'm worried and depressed,” – David Patterson, president of the ACM. There is a significant shift of $ from “Blue Sky” research to military contractors. This is a significant shift, mostly for the worse. www.nytimes.com/2005/04/02/technology/02darpa.html?

  2. Datapath Review: Single cycle datapath • 5 steps to design a processor • 1. Analyze instruction set => datapath requirements • 2. Select set of datapath components & establish clock methodology • 3. Assemble datapath meeting the requirements • 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. • 5. Assemble the control logic • Control is the hard part • MIPS makes that easier • Instructions same size • Source registers always in same place • Immediates same size, location • Operations always on registers/immediates Processor Input Control Memory Output

  3. add sub ori lw sw beq jump RegDst 1 1 0 0 x x x ALUSrc 0 0 1 1 1 0 x MemtoReg 0 0 0 1 x x x RegWrite 1 1 1 1 0 0 0 MemWrite 0 0 0 0 1 0 0 nPCsel 0 0 0 0 0 1 0 Jump 0 0 0 0 0 0 1 ExtOp x x 0 1 1 x x ALUctr<2:0> Add Subtract Or Add Add x Subtract 31 26 21 16 11 6 0 R-type op rs rt rd shamt funct add, sub immediate I-type op rs rt ori, lw, sw, beq J-type op target address jump A Summary of the Control Signals (2/2) See func 10 0000 10 0010 We Don’t Care :-) Appendix A op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

  4. 31 26 25 0 J-type jump op target address The Single Cycle Datapath during Jump • New PC = { PC[31..28], target address, 00 } Instruction<31:0> Jump= Instruction Fetch Unit nPC_sel= Rd Rt <0:15> <0:25> <21:25> <16:20> <11:15> Clk RegDst = 1 0 Mux Rt Rs Rd Imm16 TA26 ALUctr = Rs Rt RegWr = MemtoReg = 5 5 5 busA Zero MemWr = Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk Mux 32 Mux 32 1 WrEn Adr 1 Data In 32 Data Memory Extender imm16 32 16 Clk ALUSrc = ExtOp =

  5. 31 26 25 0 J-type jump op target address The Single Cycle Datapath during Jump • New PC = { PC[31..28], target address, 00 } Instruction<31:0> Jump=1 Instruction Fetch Unit nPC_sel=0 Rd Rt <0:15> <0:25> <21:25> <16:20> <11:15> Clk RegDst = x 1 0 Mux Rt Rs Rd Imm16 TA26 ALUctr =x Rs Rt RegWr = 0 MemtoReg = x 5 5 5 busA Zero MemWr = 0 Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk Mux 32 Mux 32 1 WrEn Adr 1 Data In 32 Data Memory Extender imm16 32 16 Clk ALUSrc = x ExtOp = x

  6. 31 26 25 0 J-type jump Inst Memory Adr Adder Mux Adder op target address Instruction Fetch Unit at the End of Jump • New PC = { PC[31..28], target address, 00 } Jump Instruction<31:0> nPC_sel Zero nPC_MUX_sel How do we modify thisto account for jumps? 4 00 0 PC 1 Clk imm16

  7. 31 26 25 0 J-type jump Inst Memory Adr Adder Mux Mux Adder op target address Instruction Fetch Unit at the End of Jump • New PC = { PC[31..28], target address, 00 } Jump Instruction<31:0> nPC_sel Zero • Query • Can Zero still get asserted? • Does nPC_sel need to be 0? • If not, what? nPC_MUX_sel 00 4 00 1 TA26 PC 0 4 (MSBs) 0 Clk 1 imm16

  8. Inst31 Inst30 Inst29 Inst28 Inst27 Inst26 Inst25 Inst01 Inst00 Build CL to implement Jump on paper now Jump

  9. Review: Finite State Machine (FSM) • Statesrepresent possible output values. • Transitionsrepresent changes between statesbased on inputs. • Implementwith CL andclocked registerfeedback.

  10. Finite State Machines extremely useful! • They define • How output signals respond to input signals and previous state. • How we change states depending on input signals and previous state • The output signals could be our familiar control signals • Some control signals may only depend on CL, not on state at all… • We could implement very detailed FSMs w/Programmable Logic Arrays

  11. Taking advantage of sum-of-products • Since sum-of-products is a convenient notation and way to think about design, offer hardware building blocks that match that notation • One example isProgrammable Logic Arrays (PLAs) • Designed so that can select (program) ands, ors, complements after you get the chip • Late in design process, fix errors, figure out what to do later, …

  12. • • • inputs ORarray ANDarray productterms outputs • • • Programmable Logic Arrays • Pre-fabricated building block of many AND/OR gates • “Programmed” or “Personalized" by making or breaking connections among gates • Programmable array block diagram for sum of products form • Or Programming: • How to combine product terms? • How many outputs? • And Programming: • How many inputs? • How to combine inputs? • How many product terms?

  13. Enabling Concept • Shared product terms among outputs F0 = A + B' C' F1 = A C' + A B F2 = B' C' + A B F3 = B' C + A example: input side: 3 inputs 1 = uncomplemented in term 0 = complemented in term – = does not participate personality matrix Product inputs outputs term A B C F0 F1 F2 F3AB 1 1 – 0 11 0B'C – 0 1 0 0 0 1AC' 1 – 0 0 1 0 0B'C' – 0 0 1 0 1 0A 1 – – 1 0 0 1 output side: 4 outputs 1 = term connected to output 0 = no connection to output reuse of terms; 5 product terms

  14. Before Programming • All possible connections available before “programming”

  15. B C A AB B'C AC' B'C' A F0 F1 F2 F3 After Programming • Unwanted connections are "blown" • Fuse (normally connected, break unwanted ones) • Anti-fuse (normally disconnected, make wanted connections)

  16. A B C D AB A'B' CD' C'D AB+A'B' CD'+C'D Alternate Representation • Short-hand notation--don't have to draw all the wires • X Signifies a connection is present and perpendicular signal is an input to gate notation for implementing F0 = A B + A' B' F1 = C D' + C' D

  17. Instruction<31:0> nPC_sel Instruction Fetch Unit Rd Rt <0:15> <16:20> <11:15> <21:25> Clk RegDst 1 0 Mux Rt Rs Rd Imm16 Rs Rt RegWr ALUctr Zero 5 5 5 MemWr MemtoReg busA Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk 32 Mux Mux 32 1 WrEn Adr 1 Data In 32 Data Memory Extender imm16 32 16 Clk ALUSrc ExtOp Peer Instruction • MemToReg=‘x’ & ALUctr=‘sub’. SUB or BEQ? • ALUctr=‘add’. Which 1 signal is different for all 3 of: ADD, LW, & SW? RegDst or ExtOp? • “Don’t Care” signals are useful because we can simplify our PLA personality matrix. F / T? ABC 1: SRF 2: SRT 3: SEF 4: SET 5: BRF 6: BRT 7: BEF 8: BET

  18. Datapath And in Conclusion… Single cycle control • 5 steps to design a processor • 1. Analyze instruction set => datapath requirements • 2. Select set of datapath components & establish clock methodology • 3. Assemble datapath meeting the requirements • 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. • 5. Assemble the control logic • Control is the hard part • MIPS makes that easier • Instructions same size • Source registers always in same place • Immediates same size, location • Operations always on registers/immediates Processor Input Control Memory Output

More Related