700 likes | 956 Views
DARK MATTER IN GALAXIES. NAME. INSTITUTE. Dec . 1-8, 2010. Outline of the Review Dark Matter is main protagonist in the Universe The concept of Dark Matter in virialized objects Dark Matter in Spirals, Ellipticals, dSphs Dark and Luminous Matter in galaxies. Global properties.
E N D
DARK MATTER IN GALAXIES NAME INSTITUTE Dec. 1-8, 2010
Outline of the Review Dark Matter is main protagonist in the Universe The concept of Dark Matter in virialized objects Dark Matter in Spirals, Ellipticals, dSphs Dark and Luminous Matter in galaxies. Global properties. Phenomenology of the mass distribution in Galaxies. Implications for Direct and Indirect Searches This review focus: Dark Matter in Galaxies
spiral elliptical 3 major types of galaxies dwarfs
The RealmofGalaxies The rangeofgalaxies in magnitudes, types and centralsurfacedensities: 15 mag, 4 types, 16 mag arsec-2 Centralsurfacebrightness vs galaxymagnitude Dwarfs Spirals : stellar disk +bulge+HI disk Ellipticals & dwarfs E: stellar spheroid The distribution of luminous matter :
What is Dark Matter ? In a galaxy, the radialprofileof the gravitatingmatter M(r) doesnot match thatof the luminouscomponentML(r). A MASSIVE DARK COMPONENT isthenintroducedto account for the disagreement: Itsprofile MH(r) mustobey: M(r), ML(r), dlogML(r)/dlog robserved The DM phenomenon can be investigated only if we accurately meausure the distribution of: LuminousmatterML(r). GravitatingmatterM(r)
ΛCDM Dark Matter Density Profiles from N-body simulations The density of virialized DM halos of any mass is empirically described at all times by an Universal profile (Navarro+96, 97, NFW). More massive halos and those formed earlier have larger overdensities Today mean halo density inside Rvir= 100 ϱc Klypin, 2010
Aquarius N-Body simulations, highest mass resolution to date. Density distribution: the Einasto Law indistinguishable by NFW density circular velocity Navarro et al +10 V=const
Stellar Disks M33 disk verysmooth, truncated at 4 scale-lengths NGC 300exponentialdisk for at least 10 scale-lengths RD lenght scale of the disk Freeman, 1970 Bland-Hawthornet al 2005 Ferguson et al 2003
Wong & Blitz (2002) Gas surfacedensities H2 HI HI Flattishradialdistribution Deficiency in the centre Extendedto (8 – 40) RD H2 Follows the stellar disk Negligible
Circularvelocitiesfromspectroscopy - Opticalemissionlines (H, Na) - Neutralhydrogen (HI)-carbonmonoxide (CO) Tracerangularspectralresolutionresolution HI 7" … 30" 2 … 10 km s-1 CO 1.5" … 8" 2 … 10 km s-1 H, … 0.5" … 1.5" 10 … 30 km s-1 WSRT VLA IRAM ATCA
VLT LBT KECK GTC
ROTATION CURVES artistimpression artistimpression
Symmetriccircular rotation of a disk characterizedby • Sky coordinatesof the galaxycentre • SystemicvelocityVsys • CircularvelocityV(R) • Inclination angle HIGH QUALITY ROTATION CURVE r receedingarm V(R/RD) trailingarm R/RD
Earlydiscoveryfromoptical and HI RCs RC DO NOT follows the disk velocityprofile disk RC profilesofdifferent lenght scale and amplitude Rubinet al 1980 Mass discrepancy AT OUTER RADII
Ropt light traces the mass
Evidencefor a Mass Discrepancy in Galaxies The distributionofgravitatingmatter, unlike the luminousone, isluminositydependent. Tully-Fisher relation existsat locallevel (radiiRi) no DM Yegorovaet al 2007
mag Salucci+07 6 RD Rotation Curves Coadded from 3200 individual RCs TYPICAL INDIVIDUAL RCs SHOWN BY INCREASING LUMINOSITY Low lum high lum 6 RD
The CosmicVarianceof V measuredin galaxiesofsameluminosityL at the sameradiusx=R/RDisnegligiblecomparedto the variationsthatV showsasx and L varies. sameradius sameluminosity
Universal Rotation Curve out to the VirialRadius Method: innerkinematics + independentdeterminationsofhalovirialmasses Moster, et al 2010 SPIRALS ELLIPTICALS Shankaret al, 2006 Mandelbaumet al 2006 L/L* Virial masses Mh of halos around galaxies with stellar mass MSTAR (or luminosity L ) are obtained - directly by weak-lensing analysis (left) - indirectly by correlating dN/dL with theoretical DM halo dN/dM (right)
The Conceptof the Universal Rotation Curve (URC) Every RC can berepresentedby: V(x,L) x=R/RD V/Vopt L R/RD ->Link to Movie2 The URC out to 6 RD isderiveddirectlyfromobservations Extrapolationof URC out tovirialradiusbyusing V(Rvir)
Rotation curve analysis From data to mass models observations = model • fromI-bandphotometry • from HI observations • differentchoicesfor the DM halo density • Dark haloswithcentralconstant density (Burkert, Isothermal) • Dark haloswithcentralcusps(NFW, Einasto) NFW ISO The mass model has 3 free parameters: disk mass halo central density Halo core radius (length-scale) Obtained by best fitting method Burkert
halocentral density coreradius luminosity MASS MODELLING RESULTS MI= - 21 MI= - 23 MI= -18 highestluminosities lowestluminosities halo disk disk halo halo disk Allstructural DM and LM parameters are related withluminosity.g Smallergalaxies are denser and have a higherproportionof dark matter. fractionof DM
Dark Halo Scaling Laws in Spirals Careful investigation of relationships between halo structural parameters and luminosityvia mass modelling of individual galaxies - Assumption:MaximunDisk, 30 objects - the centralslopeof the halo rotation curve gives the halocore density - extendedRCsprovidean estimate ofhalocoreradius r0 o URC o ~ LI- 0.7 ro~ LI0.7 o ~ LB- 0.6 ro~ LB0.6 ro Kormendy & Freeman (2004)
The halocentralsurfacedensity : constant in Spirals 3.0 2.5 2.0 1.5 1.0 URC Kormendy & Freeman (2004) Kormendy & Freeman (2004)
The distributionof DM aroundspirals UsingindividualgalaxiesGentile+ 2004, de Blok+ 2008 Kuzio de Naray+ 2008, Oh+ 2008, Spano+ 2008, Trachternach+ 2008, Donato+,2009 A detailedinvestigation: high quality data and modelindependentanalysis
EXAMPLES DDO 47 Gentile et al 2005 NFW Burkert Oh et al , 2008 halo B halo V gas B disk B gas disk Generalresultsfromseveralsamples e.g. THINGS • - Non-circularmotions are small. • - DM halospherical • ISO/Burkerthalosmuch more preferredover NFW • Tri-axiality and non-circularmotionscannotexplain the CDM/NFW cusp/corediscrepancy R
SPIRALS: WHAT WE KNOW AN UNIVERSAL CURVE REPRESENTS ALL INDIVIDUAL RCs MORE PROPORTION OF DARK MATTER IN SMALLER SYSTEMS THE RADIUS IN WHICH THE DM SETS IN IS A FUNCTION OF LUMINOSITY THE MASS PROFILE AT LARGER RADII IS COMPATIBLE WITH NFW DARK HALO DENSITY SHOWS A CENTRAL CORE OF SIZE 2 RD
The Stellar Spheroid Surfacebrightnessofellipticalsfollows a Sersic Re the radiusenclosinghalfof the projected light. Bydeprojecting I(R) weobtain the luminosity density j(r): ESO 540-032 Sersicprofile B R
ModellingEllipticals Measure the light profile = stellar mass profile (M*/L)-1 Derive the total mass profile M(r) Dispersionvelocitiesofstars or ofPlanetaryNebulae X-raypropertiesof the emitting hot gas Weak and/or strong lensing data Disentangle M(r) intoits dark and the stellar components In ellipticalsgravityisbalancedbypressuregradients -> Jeans Equation anisotropyof the orbits grav. potential dispersionvelocities
Kinematics of ellipticals: Isotropic Jeans modelling of velocity dispersions measure I(R), σP (R) radial notobservable derive Mh(r), Msph(r) projected Rotation isnotalwaysnegligible aperture Anisotropic Jeans equations V SAURON data of N 2974 ϬP Cappellari,2008 Krajnovic,2005
Warning: mass decomposition of dispersion velocities not unique. • Exemple: NFW halo + Sersic spheroid. Orbit isotropy. NFW halos Tiretet al 2010 RVIR The contribution of the DM halo to the central dispersion velocity is lesser than 100 km/s Mamon& Łokas05 The spheroid determines the values of the aperture dispersion velocity Inside Re the dark matterprofileisintrinsicallyunresolvable
The Fundamental Plane: the values of the central dispersion velocity, half light radius and central surface brightness are strongly related Fromvirialtheorem FundamentalPlane SDSS early-type expected , with a=2 and b=1 found: a=1.8, b=0.8 Hyde & Bernardi 2009 FundamentalPlane FP “tilt” due tovariationswithσ0of Stellar populationsamong E Jørgensenet al 1996
ThePlanetary Nebula Spectrograph Extended kinematics of elliptical galaxies obtained with the Planetary Nebula Spectrograph PN.S WHT Douglas et al. 2002 • NGC 3379 190 PNS
slide1 Jeansmodellingof PN data with a stellar spheroid + NFW dark halo Coccatoet al. 2009 NGC 4374 Napolitanoet al. 2011 R/Re 0 2 10 Velocitydispersion are flat or stronglydecreasingoutside ~2Re JEANS ANALYSIS Thereexist big DM halosaroundEllipticals, Cored and cuspy DM profiles are bothpossible. MORE DATA WMAP1
Mass profilesfromweaklensing • Lensingequationfor the observedtangentialshear e.g. Schneider,1996
MODELLING WEAK LENSING SIGNALS Lenses: 170 000 isolatedgalaxies, sources: 3 107 SDSS galaxies Mandelbaumet al 2006 NFW 0.1 0.1 tar tar Mandelbaumet al 2009 HALOS EXTEND OUT TO VIRIAL RADII • VIRIAL MASS FUNCTION OF GALAXY LUMINOSITY Halomassesexceed the masses in baryonsbymuch more than the cosmologicalfactorof 7. Halo and baryonicmasses correlate.
OUTER DM HALOS: NFW/BURKERT PROFILE FIT THEM EQUALLY WELL Donato et al 2009 NFW B SAME VALUES FOUND BY MASS MODELLING THE URC
Weakand strong lensing SLACS: Gavazzi et al. 2007) strong lensingmeasures the total mass inside the Einstein ring AN EINSTEIN RING ATReinstIMPLIES THERE A CRITICAL SURFACE DENSITY: D = ,
Strong lensing and galaxykinematics Koopmans, 2006 Assume Fit • Inside REinst the total (spheroid + dark halo) mass increaseproportionallywithradius • Inside REinst the total the fractionof dark matterissmall
Mass ProfilesfromX-ray Nigishitaet al 2009 Temperature Density M/L profile CORED HALOS? NO DM HydrostaticEquilibrium
The mass in stars in galaxies Stellar mass ofa galaxy can beobtainedvia Stellar PopulationSynthesismodelsbyitscolors and SED SPS M/LB Tinsley,1981 B-V SPS Bell,2001 Log (mass-to-light) = a + b (color) Marastonet al , 2005
Dynamical and photometricestimatesof the galaxy stellar mass agree Discrepancy 0.15 dex smallforcosmologicalapplications Largefor mass modelling Grillo et al 2009 Shankar & Bernardi 2009 Yegorovaet al 2009
ELLIPTICALS: WHAT WE KNOW A LINK AMONG THE STRUCTURAL PROPERTIES OF STELLAR SPHEROID SMALL AMOUNT OF DM INSIDE RE MASS PROFILE COMPATIBLE WITH NFW AND BURKERT DARK MATTER DIRECTLY TRACED OUT TO RVIR
Dwarf spheroidals: basic properties The smallestobjects in the Universe, benchmark fortheory dSph show largeMgrav/L Luminosities and sizes of Globular Clusters and dSph are different Gilmoreet al 2009