0 Views

Download Presentation
##### AP Statistics

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**AP Statistics**Chapter 13 Notes**Two-sample problems**• The goal is to compare the responses of two treatments given to randomly assigned groups, or to compare the characteristics of two populations. • We will be using rules for combining independent variables that we discussed in chapter 7.**Two Sample t-test/t-interval**• 1. Hypotheses • H0: μ1 = μ2 Ha: μ1 > < ≠ μ2 • OR • H0: μ1 - μ2 = 0 Ha: μ1 - μ2 > < ≠ 0 • *It is possible that μ1 - μ2 = something other than 0, but that is rare.***2 Sample t-test/interval**• 2. Conditions • (a) Randomness (SRS). If you are comparing two populations, then you must have two separate SRS’s. If you are doing an experiment, the subjects must be randomly assigned to groups. • (b) Normality: Same as before, but you must check for both populations/groups.**2 sample t-test/interval**• 2. Conditions continued…. • (c) Independence: The samples must have no influence on each other. If you are working with two separate populations, then you can apply the N > 10n rule. • In order to verify conditions, you need to analyze how the data was collected.**2-sample t-test/t-interval**• 3. Calculations • 4. Conclusion**2 proportion z interval**• *Normality n1(p-hat1), n1(1 - p-hat1), n2(p-hat2), and n2(1 - p-hat2) must all be greater than 5.**2 proportion z test**• What will the hypotheses look like? • is the combined sample proportion • =count of successes in both samples combined / count of individuals in both samples combined