Fundamentals of Digital System Design

1 / 109

# Fundamentals of Digital System Design - PowerPoint PPT Presentation

Fundamentals of Digital System Design. Pradondet Nilagupta Lecture 8: Synchronous Sequential Circuits Chapter 8. Synchronous Sequential Circuits. Sequential circuits – outputs depend on past behavior as well as present inputs. Synchronous circuits – use a clock signal to sequence behavior.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Fundamentals of Digital System Design' - jermaine-huffman

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Fundamentals of Digital System Design

Lecture 8: Synchronous Sequential Circuits

Chapter 8

Synchronous Sequential Circuits
• Sequential circuits – outputs depend on past behavior as well as present inputs.
• Synchronous circuits – use a clock signal to sequence behavior.
• Asynchronous circuits – no clock signal is used (see Chapter 9).
W

Combinational

Combinational

Z

Flip-flops

circuit

circuit

Q

Clock

Figure 8.1 The general form of a sequential circuit

Clockcycle:

t

t

t

t

t

t

t

t

t

t

t

0

1

2

3

4

5

6

7

8

9

10

w

:

0

1

0

1

1

0

1

1

1

0

1

z

:

0

0

0

0

0

1

0

0

1

1

0

A Simple Example
• Circuit has one input, w, and one output, z.
• Changes occur on positive clock edge.
• z is 1 if w is 1 during last two clock cycles.

Figure 8.2 Sequences of input and output signals

Reset

w

=

1

¤

¤

A

z

=

0

B

z

=

0

w

=

0

w

=

0

w

=

1

w

=

0

¤

C

z

=

1

w

=

1

Figure 8.3 State diagram of a simple sequential circuit

Next state

Present

Output

z

state

w

=

0

w

=

1

A

A

B

0

B

A

C

0

C

A

C

1

Figure 8.4 State table

Y

y

1

1

w

Combinational

Combinational

z

circuit

circuit

Y

y

2

2

Clock

Figure 8.5 A general sequential circuit

Next state

Present

Output

w

=

0

w

=

1

state

z

y

y

Y

Y

Y

Y

2

1

2

1

2

1

00

00

01

A

0

01

00

10

B

0

10

00

10

C

1

11

dd

dd

d

Figure 8.6 A State-assigned table

y

y

2

1

Ignoring don't cares

Using don't cares

00

01

11

10

w

0

0

0

d

0

Y

=

wy

y

Y

=

wy

y

1

2

1

2

1

1

1

1

0

d

0

y

y

2

1

w

00

01

11

10

0

0

0

d

0

Y

=

wy

y

+

wy

y

Y

=

wy

+

wy

2

1

2

1

2

2

1

2

1

0

1

d

1

(

)

=

w

y

+

y

1

2

y

1

y

2

0

1

0

0

0

z

=

y

y

z

=

y

1

2

2

1

1

d

Figure 8.7 Derivation of logic expressions

t

t

t

t

t

t

t

t

t

t

t

0

1

2

3

4

5

6

7

8

9

10

1

Clock

0

1

w

0

1

y

1

0

1

y

2

0

1

z

0

Figure 8.9 Timing diagram

Summary of Design Steps
• Obtain specification of the desired circuit.
• Create a state diagram from specification.
• Create a state table from state diagram.
• Perform state minimization.
• Perform state assignment.
• Derive the next-state logic expressions.
• Implement circuit described by logic.
Data

Extern

Bus

Clock

R

1

R

2

Rk

R

1

R

1

R

2

R

2

Rk

Rk

in

out

in

out

in

out

Control circuit

Function

Figure 7.56 A digital system with k registers

,

,

,

R

2

R

3

R

1

R

2

R

3

R

1

out

in

out

in

out

in

w

Q

Q

Q

D

D

D

Clock

Q

Q

Q

Reset

Figure 7.58 A shift-register control circuit

R

1

out

R

1

in

w

R

2

out

Control

R

2

circuit

in

R

3

out

Clock

R

3

in

Done

Figure 8.10 Signals needed in Example 8.1

w

=

0

¤

A

No

Reset

transfer

w

=

1

¤

,

B

R

2

=

1

R

3

=

1

out

in

w

=

0

w

=

1

w

=

0

w

=

1

¤

,

C

R

1

=

1

R

2

=

1

out

in

w

=

0

w

=

1

¤

,

,

D

R

3

=

1

R

1

=

1

Done

=

1

out

in

Figure 8.11 State diagram

Next state

Outputs

Present

state

w = 0

w = 1

A

A

B

0

0

0

0

0

0

0

B

C

C

0

0

1

0

0

1

0

C

D

D

1

0

0

1

0

0

0

D

A

A

0

1

0

0

1

0

1

Figure 8.12 State table

Next state

Present

Output

state

w

=

0

w

=

1

z

y

y

Y

Y

Y

Y

2

1

2

1

2

1

A

00

00

01

0

B

01

00

11

0

C

11

00

11

1

10

dd

dd

d

Figure 8.16 Improved state assignment

1

Y

y

2

2

z

Q

D

Q

Y

y

1

1

w

Q

D

Q

Clock

Resetn

Figure 8.17 Final circuit for the improved state assignment

y

y

2

1

w

00

01

11

10

0

1

Y

=

wy

+

y

y

2

2

1

1

1

1

1

y

y

2

1

w

00

01

11

10

0

1

1

Y

=

y

2

1

1

1

1

Figure 8.19 Derivation of next-state expressions

Nextstate

Present

Output

state

w

=

0

w

=

1

z

y

y

y

Y

Y

Y

Y

Y

Y

3

2

1

3

2

1

3

2

1

A

001

001

010

0

B

010

001

100

0

C

100

001

100

1

Figure 8.20 One-hot state assignment

1

Clock cycle:

t

t

t

t

t

t

t

t

t

t

t

0

1

2

3

4

5

6

7

8

9

10

w

:

0

1

0

1

1

0

1

1

1

0

1

z

:

0

0

0

0

1

0

0

1

1

0

0

Mealy State Model

• Moore machines – output is determined only be present state.
• Mealy machines – output depends on both present state and input values.

Figure 8.22 Sequences of input and output signals

1

Reset

¤

w

=

1

z

=

0

¤

¤

w

=

0

z

=

0

w

=

1

z

=

1

A

B

¤

w

=

0

z

=

0

z

Next state

Output

Present

state

w

=

0

w

=

1

w

=

0

w

=

1

A

A

B

0

0

B

A

B

0

1

Figure 8.23 State diagram

Next state

Output

Present

z

Next state

Output

state

Present

w

=

0

w

=

1

w

=

0

w

=

1

state

w

=

0

w

=

1

w

=

0

w

=

1

y

Y

Y

z

z

A

A

B

0

0

A

0

0

1

0

0

B

A

B

0

1

B

1

0

1

0

1

Figure 8.24 State table

z

w

Q

D

y

Clock

Q

Resetn

(a) Circuit

t

t

t

t

t

t

t

t

t

t

t

0

1

2

3

4

5

6

7

8

9

10

1

Clock

0

1

w

0

1

y

0

1

z

0

(b) Timing diagram

Figure 8.26 FSM implementation

w

=

0

Reset

A

¤

,

w

R

R

=

1

2

=

1

3

=

1

out

in

B

w

=

0

,

R

R

1

=

1

2

=

1

out

in

w

=

1

C

w

=

0

,

,

R

R

Done

3

=

1

1

=

1

=

1

out

in

w

=

1

Figure 8.28 State diagram for Example 8.4

,

,

,

R

2

R

3

R

1

R

2

R

3

R

1

out

in

out

in

out

in

Reset

w

P

Q

Q

Q

D

D

D

Q

Q

Q

Clock

Figure 7.59 A modified control circuit

Design of FSMs using CAD tools
• Could design using manual techniques then use schematic capture or structural VHDL.
• Instead should enter state table via a state diagram editor or behavioral VHDL.
USE ieee.std_logic_1164.all ;

ENTITY simple IS

PORT ( Clock, Resetn, w : IN STD_LOGIC ;

z : OUT STD_LOGIC ) ;

END simple ;

ARCHITECTURE Behavior OF simple IS

TYPE State_type IS (A, B, C) ;

SIGNAL y : State_type ;

BEGIN

PROCESS ( Resetn, Clock )

BEGIN

IF Resetn = '0' THEN

y <= A ;

ELSIF (Clock'EVENT AND Clock = '1') THEN

con’t ...

Figure 8.29a VHDL code for a simple FSM

CASE y IS

WHEN A =>

IF w = '0' THEN

y <= A ;

ELSE

y <= B ;

END IF ;

WHEN B =>

IF w = '0' THEN

y <= A ;

ELSE

y <= C ;

END IF ;

WHEN C =>

IF w = '0' THEN

y <= A ;

ELSE

y <= C ;

END IF ;

END CASE ;

END IF ;

END PROCESS ;

z <= '1' WHEN y = C ELSE '0' ;

END Behavior ;

Figure 8.29b VHDL code for a simple FSM (con’t)

Interconnection wires

Resetn

Clock

w

PAL-like block

1

1

0

y

1

D

Q

1

1

0

y

2

D

Q

0

1

0

z

D

Q

(Other macrocells are not shown)

Figure 8.30 Implementation of an FSM in a CPLD

(a) Timing simulation results

(b) Magnified simulation results, showing timing details

Figure 8.32 Simulation results

(ENTITY declaration not shown)

ARCHITECTURE Behavior OF simple IS

TYPE State_type IS (A, B, C) ;

SIGNAL y_present, y_next : State_type ;

BEGIN

PROCESS ( w, y_present )

BEGIN

CASE y_present IS

WHEN A =>

IF w = '0' THEN

y_next <= A ;

ELSE

y_next <= B ;

END IF ;

WHEN B =>

IF w = '0' THEN

y_next <= A ;

ELSE

y_next <= C ;

END IF ;

Figure 8.33a Alternative style of code for an FSM

WHEN C =>

IF w = '0' THEN

y_next <= A ;

ELSE

y_next <= C ;

END IF ;

END CASE ;

END PROCESS ;

PROCESS (Clock, Resetn)

BEGIN

IF Resetn = '0' THEN

y_present <= A ;

ELSIF (Clock'EVENT AND Clock = '1') THEN

y_present <= y_next ;

END IF ;

END PROCESS ;

z <= '1' WHEN y_present = C ELSE '0' ;

END Behavior ;

Figure 8.33b Alternative style of code for an FSM (con’t)

(ENTITY declaration not shown)

ARCHITECTURE Behavior OF simple IS

TYPE State_TYPE IS (A, B, C) ;

ATTRIBUTE ENUM_ENCODING : STRING ;

ATTRIBUTE ENUM_ENCODING OF State_type : TYPE IS "00 01 11" ;

SIGNAL y_present, y_next : State_type ;

BEGIN

con’t ...

Figure 8.34 A user-defined attribute for manual state assignment

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY simple IS

PORT ( Clock, Resetn, w : IN STD_LOGIC ;

z : OUT STD_LOGIC ) ;

END simple ;

ARCHITECTURE Behavior OF simple IS

SIGNAL y_present, y_next : STD_LOGIC_VECTOR(1 DOWNTO 0);

CONSTANT A : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00" ;

CONSTANT B : STD_LOGIC_VECTOR(1 DOWNTO 0) := "01" ;

CONSTANT C : STD_LOGIC_VECTOR(1 DOWNTO 0) := "11" ;

BEGIN

PROCESS ( w, y_present )

BEGIN

CASE y_present IS

WHEN A =>

IF w = '0' THEN y_next <= A ;

ELSE y_next <= B ;

END IF ;

… con’t

Figure 8.35a Using constants for manual state assignment

WHEN B =>

IF w = '0' THEN y_next <= A ;

ELSE y_next <= C ;

END IF ;

WHEN C =>

IF w = '0' THEN y_next <= A ;

ELSE y_next <= C ;

END IF ;

WHEN OTHERS =>

y_next <= A ;

END CASE ;

END PROCESS ;

PROCESS ( Clock, Resetn )

BEGIN

IF Resetn = '0' THEN

y_present <= A ;

ELSIF (Clock'EVENT AND Clock = '1') THEN

y_present <= y_next ;

END IF ;

END PROCESS ;

z <= '1' WHEN y_present = C ELSE '0' ;

END Behavior ;

Figure 8.35b Using constants for manual state assignment (cont’)

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mealy IS

PORT ( Clock, Resetn, w : IN STD_LOGIC ;

z : OUT STD_LOGIC ) ;

END mealy ;

ARCHITECTURE Behavior OF mealy IS

TYPE State_type IS (A, B) ;

SIGNAL y : State_type ;

BEGIN

PROCESS ( Resetn, Clock )

BEGIN

IF Resetn = '0' THEN

y <= A ;

ELSIF (Clock'EVENT AND Clock = '1') THEN

CASE y IS

WHEN A =>

IF w = '0' THEN y <= A ;

ELSE y <= B ;

END IF ;

… con’t

Figure 8.36 VHDL code for a Mealy machine

WHEN B =>

IF w = '0' THEN y <= A ;

ELSE y <= B ;

END IF ;

END CASE ;

END IF ;

END PROCESS ;

PROCESS ( y, w )

BEGIN

CASE y IS

WHEN A =>

z <= '0' ;

WHEN B =>

z <= w ;

END CASE ;

END PROCESS ;

END Behavior ;

Figure 8.36b VHDL code for a Mealy machine (con’t)

A

a

Shift register

s

Shift register

FSM

Shift register

b

Sum

A

B

=

+

B

Clock

Figure 8.39 Block diagram of a serial adder

Next state

Output

Present

s

Next state

Output

Present

state

ab

=00

01

10

11

00

01

10

11

state

ab

=00

01

10

11

00

01

10

11

y

Y

s

G

G

G

G

H

0

1

1

0

0

0

0

0

1

0

1

1

0

H

G

H

H

H

1

0

0

1

1

0

1

1

1

1

0

0

1

Figure 8.41 State table for the serial adder

s

a

Full

b

Y

y

Q

D

carry-out

Clock

Q

Reset

Figure 8.43 Circuit for the adder FSM

Reset

11

01

¤

¤

G

s

=

0

H

s

=

0

00

0

0

10

00

01

01

00

11

11

10

10

01

¤

¤

G

s

=

1

H

s

=

1

11

1

1

10

00

Figure 8.44 State diagram for the Moore-type serial adder FSM

Nextstate

Present

Nextstate

Present

Output

Output

ab

state

=00

01

10

11

state

ab

=00

01

10

11

s

y

y

s

2

1

Y

Y

2

1

G

G

G

G

H

0

0

0

1

1

0

00

0

0

01

0

1

10

0

G

G

G

G

H

1

1

0

1

1

0

01

0

0

01

0

1

10

1

H

G

H

H

H

0

0

1

0

0

1

10

0

1

10

1

0

11

0

H

G

H

H

H

1

1

1

0

0

1

11

0

1

10

1

0

11

1

Figure 8.45 State table for the Moore-type serial adder FSM

y

Y

Sum bit

1

1

a

s

Q

D

Full

b

Carry-out

Q

Y

y

2

2

Q

D

Clock

Q

Reset

Figure 8.47 Circuit for the Moore-type serial adder FSM

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

-- left-to-right shift register with parallel load and enable

ENTITY shiftrne IS

GENERIC ( N : INTEGER := 4 ) ;

PORT ( R : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

L, E, w : IN STD_LOGIC ;

Clock : IN STD_LOGIC ;

Q : BUFFER STD_LOGIC_VECTOR(N-1 DOWNTO 0) ) ;

END shiftrne ;

ARCHITECTURE Behavior OF shiftrne IS

BEGIN

PROCESS

BEGIN

… con’t

Figure 8.48a Code for a left-to-right shift register with an enable input

WAIT UNTIL Clock'EVENT AND Clock = '1' ;

IF E = '1' THEN

IF L = '1' THEN

Q <= R ;

ELSE

Genbits: FOR i IN 0 TO N-2 LOOP

Q(i) <= Q(i+1) ;

END LOOP ;

Q(N-1) <= w ;

END IF ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 8.48b Code for a left-to-right shift register with an enable input (con’t)

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY serial IS

GENERIC ( length : INTEGER := 8 ) ;

PORT ( Clock : IN STD_LOGIC ;

Reset : IN STD_LOGIC ;

A, B : IN STD_LOGIC_VECTOR(length-1 DOWNTO 0) ;

Sum : BUFFER STD_LOGIC_VECTOR(length-1 DOWNTO 0) );

END serial ;

ARCHITECTURE Behavior OF serial IS

COMPONENT shiftrne

GENERIC ( N : INTEGER := 4 ) ;

PORT ( R : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

L, E, w : IN STD_LOGIC ;

Clock : IN STD_LOGIC ;

Q : BUFFER STD_LOGIC_VECTOR(N-1 DOWNTO 0) ) ;

END COMPONENT ;

SIGNAL QA, QB, Null_in : STD_LOGIC_VECTOR(length-1 DOWNTO 0) ;

SIGNAL s, Low, High, Run : STD_LOGIC ;

SIGNAL Count : INTEGER RANGE 0 TO length ;

TYPE State_type IS (G, H) ;

SIGNAL y : State_type ;

… con’t

Figure 8.49a VHDL code for the serial adder

BEGIN

Low <= '0' ; High <= '1' ;

ShiftA: shiftrne GENERIC MAP (N => length)

PORT MAP ( A, Reset, High, Low, Clock, QA ) ;

ShiftB: shiftrne GENERIC MAP (N => length)

PORT MAP ( B, Reset, High, Low, Clock, QB ) ;

AdderFSM: PROCESS ( Reset, Clock )

BEGIN

IF Reset = '1' THEN

y <= G ;

ELSIF Clock'EVENT AND Clock = '1' THEN

CASE y IS

WHEN G =>

IF QA(0) = '1' AND QB(0) = '1' THEN y <= H ;

ELSE y <= G ;

END IF ;

WHEN H =>

IF QA(0) = '0' AND QB(0) = '0' THEN y <= G ;

ELSE y <= H ;

END IF ;

END CASE ;

END IF ;

… con’t

Figure 8.49b VHDL code for the serial adder (con’t)

WITH y SELECT

s <= QA(0) XOR QB(0) WHEN G,

NOT ( QA(0) XOR QB(0) ) WHEN H ;

Null_in <= (OTHERS => '0') ;

ShiftSum: shiftrne GENERIC MAP ( N => length )

PORT MAP ( Null_in, Reset, Run, s, Clock, Sum ) ;

Stop: PROCESS

BEGIN

WAIT UNTIL (Clock'EVENT AND Clock = '1') ;

IF Reset = '1' THEN

Count <= length ;

ELSIF Run = '1' THEN

Count <= Count -1 ;

END IF ;

END PROCESS ;

Run <= '0' WHEN Count = 0 ELSE '1' ; -- stops counter and ShiftSum

END Behavior ;

Figure 8.49c VHDL code for the serial adder (con’t)

1

0

0

0

a

a

D

D

D

D

7

0

3

2

1

0

L

Counter

E

L

w

0

Q

Q

Q

Q

3

2

1

0

1

E

b

b

FSM

7

0

Run

L

0

0

w

0

1

E

L

w

E

Clock

Reset

Sum

Sum

7

0

State Minimization
• It is often difficult for designer to find FSM with minimal number of states.
• Fewer states leads to fewer flip-flops.
• Two states Si and Sj are equivalent iff for every input sequence starting in Sior Sj, the same output sequence is produced.
Partitioning Minimization
• If w=0 in Si and result is Su then Su is 0-successor.
• If w=1 in Si and result is Sv then Sv is 1-successor.
• Si and Sj are equivalent if k-successors equivalent.
• Consider states as set then break set into partitions comprised of subsets which are not equivalent.
• A partition consists of 1 or more blocks, each block comprises a subset of states that may be equivalent, but states in a block are definitely not equivalent to states in another block.
Next state

Present

Output

z

state

w

=

0

w

=

1

A

B

C

1

B

D

F

1

C

F

E

0

D

B

G

1

E

F

C

0

F

E

D

0

G

F

G

0

Figure 8.51 State table for Example 8.5

Nextstate

Present

Output

z

state

w

=

0

w

=

1

A

B

C

1

B

A

F

1

C

F

C

0

F

C

A

0

Figure 8.52 Minimized state table for Example 8.5

Clock

sense

N

sense

D

N

D

(a) Timing diagram

N

sense

Q

Q

D

D

N

Clock

Q

Q

N

(b) Circuit that generates

Figure 8.53 Signals for the vending machine

DN

Reset

DN

¤

S1

0

DN

DN

DN

DN

D

N

D

¤

¤

S2

0

S3

0

¤

¤

S4

1

S7

1

N

D

N

DN

¤

S6

0

¤

S5

1

DN

DN

N

D

¤

¤

S8

1

S9

1

Figure 8.54 State diagram for Example 8.6

Next state

Present

Output

state

z

DN

=00

01

10

11

S1

S1

S3

S2

0

S2

S2

S4

S5

0

S3

S3

S6

S7

0

S4

S1

1

S5

S3

1

S6

S6

S8

S9

0

S7

S1

1

S8

S1

1

S9

S3

1

Figure 8.55 State table for Example 8.6

Next state

Present

Output

state

z

DN

=00

01

10

11

S1

S1

S3

S2

0

S2

S2

S4

S5

0

S3

S3

S2

S4

0

S4

S1

1

S5

S3

1

Figure 8.56 Minimized state table for Example 8.6

DN

¤

S1

0

N

DN

¤

S3

0

D

DN

DN

N

D

¤

¤

S2

0

S5

1

DN

N

D

¤

S4

1

Figure 8.57 Minimized state diagram for Example 8.6

¤

DN

0

S1

¤

¤

N

0

D

1

¤

DN

0

S3

¤

¤

N

1

D

0

¤

¤

N

0

D

1

S2

¤

DN

0

Figure 8.58 Mealy-type FSM for Example 8.6

Incompletely Specified FSMs
• Partitioning scheme works well when all entries in state table are specified.
• If one or more entries are not specified, then the FSM is incompletely specified.
• Partitioning scheme not guaranteed to produce minimal solution in this case.
z

Next state

Output

Present

state

w

=

0

w

=

1

w

=

0

w

=

1

A

B

C

0

0

B

D

0

C

F

E

0

1

D

B

G

0

0

E

F

C

0

1

F

E

D

0

1

G

F

0

Figure 8.59 Incompletely specified state table for Example 8.7

z

Next state

Output

Present

state

w

=

0

w

=

1

w

=

0

w

=

1

A

B

C

0

0

B

D

0

C

F

E

0

1

D

B

G

0

0

E

F

C

0

1

F

E

D

0

1

G

F

0

Figure 8.59 Incompletely specified state table for Example 8.7

=

0

=

0

=

0

w

w

w

=

0

w

=

1

=

1

=

1

w

w

w

A/0

B/1

C/2

D/3

=

1

=

1

w

w

H/7

G/6

F/5

E/4

=

1

=

1

=

1

w

w

w

=

0

=

0

=

0

=

0

w

w

w

w

Figure 8.60 State diagram for a counter

Next state

Present

Output

state

w

=

0

w

=

1

A

A

B

0

B

B

C

1

C

C

D

2

D

D

E

3

E

E

F

4

F

F

G

5

G

G

H

6

H

H

A

7

Figure 8.61 State table for the counter

Next state

Present

Count

state

w

=

0

w

=

1

y

y

y

z

z

z

2

1

0

2

1

0

Y

Y

Y

Y

Y

Y

2

1

0

2

1

0

A

000

000

001

000

B

001

001

010

001

C

010

010

011

010

D

011

011

100

011

E

100

100

101

100

F

101

101

110

101

G

110

110

111

110

H

111

111

000

111

Figure 8.62 State-assigned table for the counter

y

y

y

y

1

0

1

0

wy

wy

2

2

00

01

11

10

00

01

11

10

00

00

0

1

1

0

0

0

1

1

01

01

0

1

1

0

0

0

1

1

11

1

0

0

1

11

0

1

0

1

10

1

0

0

1

10

0

1

0

1

Y

=

wy

+

wy

Y

=

wy

+

y

y

+

wy

y

0

0

0

0

1

1

1

0

1

y

y

1

0

wy

2

00

01

11

10

00

0

0

0

0

01

1

1

1

1

11

1

1

0

1

10

0

0

1

0

Y

=

wy

+

y

y

+

y

y

+

w

y

y

y

0

1

2

2

2

2

2

0

1

Figure 8.63 Karnaugh maps for D flip-flops for the counter

w

Y

0

y

Q

D

0

Q

Y

1

y

Q

D

1

Q

Y

2

y

Q

D

2

Q

Clock

Resetn

Figure 8.64 Circuit diagram for the counter

Implementation Using JK-FF
• If FF in state 0 to remain 0, J=0 and K=d.
• If FF in state 0 to change to 1, J=1 and K=d.
• If FF in state 1 to remain 1, J=d and K=0.
• If FF in state 1 to change to 0, J=d and K=1.
Flip-flop inputs

Present

Count

w

=

0

w

=

1

state

y

y

y

z

z

z

2

1

0

2

1

0

Y

Y

Y

J

K

J

K

J

K

Y

Y

Y

J

K

J

K

J

K

2

1

0

2

2

1

1

0

0

2

1

0

2

2

1

1

0

0

000

000

0d

0d

0d

001

0d

0d

1d

000

A

001

001

0d

0d

d0

010

0d

1d

d1

001

B

010

010

0d

d0

0d

011

0d

d0

1d

010

C

011

011

0d

d0

d0

100

1d

d1

d1

011

D

100

100

d0

0d

0d

101

d0

0d

1d

100

E

101

101

d0

0d

d0

110

d0

1d

d1

101

F

110

110

d0

d0

0d

111

d0

d0

1d

110

G

111

111

d0

d0

d0

000

d1

d1

d1

111

H

Figure 8.65 Excitation table for the counter with JK flip-flops

y

y

y

y

1

0

1

0

wy

wy

2

2

00

01

11

10

00

01

11

10

00

00

0

d

d

0

d

0

0

d

01

01

0

d

d

0

d

0

0

d

11

1

d

d

1

11

d

1

1

d

10

1

d

d

1

10

d

1

1

d

=

=

J

w

K

w

0

0

y

y

y

y

1

0

1

0

wy

wy

2

2

00

01

11

10

00

01

11

10

00

00

0

0

d

d

d

d

0

0

01

01

0

0

d

d

d

d

0

0

11

0

1

d

d

11

d

d

1

0

10

0

1

d

d

10

d

d

1

0

=

=

J

wy

K

wy

1

0

1

0

y

y

y

y

1

0

1

0

wy

wy

2

2

00

01

11

10

00

01

11

10

00

00

0

0

0

0

d

d

d

d

01

01

d

d

d

d

0

0

0

0

11

d

d

d

d

11

0

0

1

0

10

0

0

1

0

10

d

d

d

d

=

=

J

wy

y

K

wy

y

2

0

1

2

0

1

Figure 8.66 Circuit diagram for the counter

Present

Next

Output

z

z

z

state

state

2

1

0

A

B

000

B

C

100

C

D

010

D

E

110

E

F

001

F

G

101

G

H

011

H

A

111

Figure 8.69 State table for the counterlike example

Present

Next

Output

state

state

y

y

y

Y

Y

Y

z

z

z

2

1

0

2

1

0

2

1

0

000

1

00

0

00

100

0

10

1

00

010

1

10

0

10

110

0

01

1

10

001

1

01

0

01

101

0

11

1

01

011

1

11

0

11

111

0

00

1

11

Figure 8.70 State-assigned table

z

Q

D

2

Q

z

Q

D

1

Q

z

Q

D

0

w

Q

Figure 8.71 Circuit for the counterlike example

000

Reset

Idle

0xx

1xx

¤

gnt1

g

=

1

1

1xx

x0x

01x

¤

gnt2

g

=

1

2

x1x

xx0

001

¤

gnt3

g

=

1

3

xx1

Figure 8.72 State diagram for the arbiter

r

r

r

1

2

3

Reset

Idle

r

r

1

1

¤

gnt1

g

=

1

1

r

r

r

r

1

2

1

2

¤

gnt2

g

=

1

2

r

r

r

r

r

2

3

1

2

3

¤

gnt3

g

=

1

3

r

3

Figure 8.73 Alternative style of state diagram for the arbiter

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY arbiter IS

PORT ( Clock, Resetn : IN STD_LOGIC ;

r : IN STD_LOGIC_VECTOR(1 TO 3) ;

g : OUT STD_LOGIC_VECTOR(1 TO 3) ) ;

END arbiter ;

ARCHITECTURE Behavior OF arbiter IS

TYPE State_type IS (Idle, gnt1, gnt2, gnt3) ;

SIGNAL y : State_type ;

BEGIN

PROCESS ( Resetn, Clock )

BEGIN

IF Resetn = '0' THEN y <= Idle ;

ELSIF (Clock'EVENT AND Clock = '1') THEN

CASE y IS

WHEN Idle =>

IF r(1) = '1' THEN y <= gnt1 ;

ELSIF r(2) = '1' THEN y <= gnt2 ;

ELSIF r(3) = '1' THEN y <= gnt3 ;

ELSE y <= Idle ;

END IF ;

… con’t

Figure 8.74a VHDL code for the arbiter

WHEN gnt1 =>

IF r(1) = '1' THEN y <= gnt1 ;

ELSE y <= Idle ;

END IF ;

WHEN gnt2 =>

IF r(2) = '1' THEN y <= gnt2 ;

ELSE y <= Idle ;

END IF ;

WHEN gnt3 =>

IF r(3) = '1' THEN y <= gnt3 ;

ELSE y <= Idle ;

END IF ;

END CASE ;

END IF ;

END PROCESS ;

g(1) <= '1' WHEN y = gnt1 ELSE '0' ;

g(2) <= '1' WHEN y = gnt2 ELSE '0' ;

g(3) <= '1' WHEN y = gnt3 ELSE '0' ;

END Behavior ;

Figure 8.74b VHDL code for the arbiter (con’t)

.

.

.

PROCESS( y )

BEGIN

IF y = gnt1 THEN g(1) <= '1' ;

ELSIF y = gnt2 THEN g(2) <= '1' ;

ELSIF y = gnt3 THEN g(3) <= '1' ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 8.75 Incorrect VHDL code for the grant signals

.

.

.

PROCESS( y )

BEGIN

g(1) <= '0' ;

g(2) <= '0' ;

g(3) <= '0' ;

IF y = gnt1 THEN g(1) <= '1' ;

ELSIF y = gnt2 THEN g(2) <= '1' ;

ELSIF y = gnt3 THEN g(3) <= '1' ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 8.76 Correct VHDL code for the grant signals

a) Output delays using binary encoding

b) Output delays using one-hot encoding

Figure 8.78 Output delays in the arbiter circuit

Next State

Present

Output

Next state

state

w

=

0

w

=

1

Present

Output

z

y

y

state

z

2

1

Y

Y

Y

Y

w

=

0

w

=

1

2

1

2

1

0

0

0

0

01

0

A

A

B

0

0

1

0

0

10

0

B

A

C

0

1

0

0

0

11

0

C

A

D

0

1

1

0

0

11

1

D

A

D

1

(a)State-assigned table

(b)State table

Figure 8.81 Tables for the circuit in Example 8.8

y

J

1

1

w

Q

J

z

K

Q

K

1

y

J

2

2

Q

J

Clock

K

Q

K

2

Resetn

Figure 8.82 Circuit for Example 8.9

Flip-flop inputs

Present

Output

state

w

=

0

w

=

1

y

y

z

2

1

J

K

J

K

J

K

J

K

2

2

1

1

2

2

1

1

00

01

0

1

0

0

1

1

0

01

01

0

1

1

0

1

1

0

10

01

0

1

0

0

1

0

0

11

01

0

1

1

0

1

0

1

Figure 8.83 Excitation table

Flip-flop inputs

Present

Output

w

=

0

w

=

1

state

z

y

y

2

1

T

D

T

D

2

1

2

1

0

0

0

0

01

0

0

1

0

0

10

0

1

0

1

0

01

0

1

1

1

0

01

1

Figure 8.85 Excitation table

State name

Output signals

0 (False)

1 (True)

Condition

or actions

expression

(Moore type)

(a) State box

(b) Decision box

Conditional outputs

or actions (Mealy type)

(c) Conditional output box

Figure 8.86 Elements used in ASM charts

Reset

A

0

w

1

B

0

w

1

C

z

0

1

w

Figure 8.87 ASM chart for a simple FSM

Reset

Idle

1

r

1

gnt1

1

0

0

g

1

r

1

1

r

2

1

0

gnt2

0

g

2

r

2

0

1

r

3

1

gnt3

0

g

3

r

3

Figure 8.89 ASM chart for the arbiter

w

z

1

1

Outputs

Inputs

Combinational

w

z

n

m

circuit

y

Y

k

k

Next-state

Present-state

variables

variables

y

Y

1

1

Figure 8.90 The general model for a sequential circuit

Formal Model for FSMs
• M = (W, Z, S, , )
• W is finite, nonempty set of inputs.
• Z is finite, nonempty set of outputs.
• S is finite, nonempty set of states.
•  is the state transition function:
• S(t+1) = [W(t),S(t)]
•  is the output function:
• (t) = [S(t)] (Moore model)
• (t) = [W(t),S(t)] (Mealy model)
Summary
• FSM Design (Moore and Mealy)
• State minimization
• State assignment
• Using CAD tools and VHDL