770 likes | 803 Views
Explore network security principles including cryptography, message integrity, and operational security. Learn about SSL, IPsec, and more with practical examples. Understand symmetric key cryptography, encryption algorithms, and different ciphers for secure communication.
E N D
Chapter goals: understand principles of network security: cryptography and its many uses beyond “confidentiality” authentication message integrity security in practice: firewalls and intrusion detection systems security in application, transport, network, link layers Chapter 8: Network Security 8: Network Security
Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity 8.4 Securing e-mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7 Securing wireless LANs 8.8 Operational security: firewalls and IDS 8: Network Security
Friends and enemies: Alice, Bob, Trudy • well-known in network security world • Bob, Alice (lovers!) want to communicate “securely” • Trudy (intruder) may intercept, delete, add messages Alice Bob data, control messages channel secure sender secure receiver data data Trudy 8: Network Security
There are bad guys (and girls) out there! Q: What can a “bad guy” do? A: a lot! • eavesdrop: intercept messages • actively insert messages into connection • impersonation: can fake (spoof) source address in packet (or any field in packet) • hijacking: “take over” ongoing connection by removing sender or receiver, inserting himself in place • denial of service: prevent service from being used by others (e.g., by overloading resources) 8: Network Security
What is network security? Confidentiality: only sender, intended receiver should “understand” message contents • sender encrypts message • receiver decrypts message Authentication: sender, receiver want to confirm identity of each other Message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection Access and availability: services must be accessible and available to users 8: Network Security
Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity 8.4 Securing e-mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7 Securing wireless LANs 8.8 Operational security: firewalls and IDS 8: Network Security
K K A B The language of cryptography Alice’s encryption key Bob’s decryption key symmetric key crypto: sender, receiver keys identical public-key crypto: encryption key public, decryption key secret (private) encryption algorithm decryption algorithm ciphertext plaintext plaintext 8: Network Security
Symmetric key cryptography substitution cipher: substituting one thing for another • monoalphabetic cipher: substitute one letter for another plaintext: abcdefghijklmnopqrstuvwxyz ciphertext: mnbvcxzasdfghjklpoiuytrewq E.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc Key: the mapping from the set of 26 letters to the set of 26 letters • Q: How hard to break this simple cipher?: • brute force (how hard?) or other? 8: Network Security
Polyalphabetic encryption • n monoalphabetic cyphers, M1,M2,…,Mn • Cycling pattern: • e.g., n=5, M1,M3,M4,M3,M2; M1,M3,M4,M3,M2; • For each new plaintext symbol, use subsequent monoalphabetic pattern in cyclic pattern • dog: d from M1, o from M3, g from M4 • Key: the n ciphers and the cyclic pattern
K K A-B A-B K (m) m = K ( ) A-B A-B Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K • e.g., key is knowing substitution pattern in mono alphabetic substitution cipher • Q: how do Bob and Alice agree on key value? encryption algorithm decryption algorithm ciphertext plaintext plaintext message, m K (m) A-B A-B 8: Network Security
Two types of symmetric ciphers • Stream ciphers • encrypt one bit at time • Block ciphers • Break plaintext message in equal-size blocks • Encrypt each block as a unit
Stream Ciphers pseudo random • Combine each bit of keystream with bit of plaintext to get bit of ciphertext • m(i) = ith bit of message • ks(i) = ith bit of keystream • c(i) = ith bit of ciphertext • c(i) = ks(i) m(i) ( = exclusive or) • m(i) = ks(i) c(i) keystream generator key keystream
RC4 Stream Cipher • RC4 is a popular stream cipher • Extensively analyzed and considered good • Key can be from 1 to 256 bytes • Used in WEP for 802.11 • Can be used in SSL
Block ciphers • How many possible mappings are there for k=3? • How many 3-bit inputs? • How many permutations of the 3-bit inputs? • Answer: 40,320 ; not very many! • In general, 2k! mappings; huge for k=64 • Problem: • Table approach requires table with 264 entries, each entry with 64 bits • Table too big: instead use function that simulates a randomly permuted table
From Kaufman et al 64-bit input 8bits 8bits 8bits 8bits 8bits 8bits 8bits 8bits S5 S6 S7 S8 S2 S4 S3 S1 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 64-bit intermediate Loop for n rounds 64-bit output Prototype function 8-bit to 8-bit mapping
Why rounds in prototpe? • If only a single round, then one bit of input affects at most 8 bits of output. • In 2nd round, the 8 affected bits get scattered and inputted into multiple substitution boxes. • How many rounds? • How many times do you need to shuffle cards • Becomes less efficient as n increases
DES operation Symmetric key crypto: DES initial permutation 16 identical “rounds” of function application, each using different 48 bits of key final permutation 8: Network Security
Symmetric key crypto: DES DES: Data Encryption Standard • US encryption standard [NIST 1993] • 56-bit symmetric key, 64-bit plaintext input • How secure is DES? • DES Challenge: 56-bit-key-encrypted phrase (“Strong cryptography makes the world a safer place”) decrypted (brute force) in 4 months • no known “backdoor” decryption approach • making DES more secure: • use three keys sequentially (3-DES) on each datum • use cipher-block chaining 8: Network Security
AES: Advanced Encryption Standard • new (Nov. 2001) symmetric-key NIST standard, replacing DES • processes data in 128 bit blocks • 128, 192, or 256 bit keys • brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES 8: Network Security
Public key cryptography symmetric key crypto • requires sender, receiver know shared secret key • Q: how to agree on key in first place (particularly if never “met”)? public key cryptography • radically different approach [Diffie-Hellman76, RSA78] • sender, receiver do not share secret key • public encryption key known to all • private decryption key known only to receiver 8: Network Security
+ K (m) B - + m = K (K (m)) B B Public key cryptography + Bob’s public key K B - Bob’s private key K B encryption algorithm decryption algorithm plaintext message plaintext message, m ciphertext 8: Network Security
K (K (m)) = m B B - + 2 1 Public key encryption algorithms Requirements: need K ( ) and K ( ) such that . . + - B B + given public key K , it should be impossible to compute private key K B - B RSA: Rivest, Shamir, Adleman algorithm 8: Network Security
+ - K K B B RSA: Choosing keys 1. Choose two large prime numbers p, q. (e.g., 1024 bits each) 2. Compute n = pq, z = (p-1)(q-1) 3. Choose e (with e<n) that has no common factors with z. (e, z are “relatively prime”). 4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod z = 1 ). 5.Public key is (n,e).Private key is (n,d). 8: Network Security
1. To encrypt bit pattern, m, compute d e m = c mod n c = m mod n e (i.e., remainder when m is divided by n) d e m = (m mod n) mod n RSA: Encryption, decryption 0. Given (n,e) and (n,d) as computed above 2. To decrypt received bit pattern, c, compute d (i.e., remainder when c is divided by n) Magic happens! c 8: Network Security
d e m = c mod n c = m mod n d c RSA example: Bob chooses p=5, q=7. Then n=35, z=24. e=5 (so e, z relatively prime). d=29 (so ed-1 exactly divisible by z. e m m letter encrypt: l 17 1524832 12 c letter decrypt: 17 12 l 481968572106750915091411825223071697 8: Network Security
Prerequisite: modular arithmetic • x mod n = remainder of x when divide by n • Facts: [(a mod n) + (b mod n)] mod n = (a+b) mod n [(a mod n) - (b mod n)] mod n = (a-b) mod n [(a mod n) * (b mod n)] mod n = (a*b) mod n • Thus (a mod n)d mod n = ad mod n • Example: x=14, n=10, d=2:(x mod n)d mod n = 42 mod 10 = 6xd = 142 = 196 xd mod 10 = 6 8: Network Security
e d ed (m mod n) mod n = m mod n ed mod (p-1)(q-1) 1 = m = m mod n = m mod n y y mod (p-1)(q-1) d e x mod n = x mod n m = (m mod n) mod n RSA: Why is that Useful number theory result: If p,q prime and n = pq, then: (using number theory result above) (since we choseed to be divisible by (p-1)(q-1) with remainder 1 ) 8: Network Security
K (K (m)) = m - B B + K (K (m)) - + = B B RSA: another important property The following property will be very useful later: use private key first, followed by public key use public key first, followed by private key Result is the same! 8: Network Security
K (K (m)) = m - B B + K (K (m)) - + = B B Why is RSA Secure? Why ? Follows directly from modular arithmetic: (me mod n)d mod n = med mod n = mde mod n = (md mod n)e mod n • Suppose you know Bob’s public key (n,e). How hard is it to determine d? • Essentially need to find factors of n without knowing the two factors p and q. • Fact: factoring a big number is hard.
Still Need Secret Session keys • Exponentiation is computationally intensive • DES is at least 100 times faster than RSA Session key, KS • Bob and Alice use RSA to exchange a symmetric key KS • Once both have KS, they use symmetric key cryptography 8: Network Security
Chapter 8 roadmap 8.1What is network security? 8.2 Principles of cryptography 8.3 Message integrity 8.4 Securing e-mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7 Securing wireless LANs 8.8 Operational security: firewalls and IDS 8: Network Security
Bob receives msg from Alice, wants to ensure: message originally came from Alice message not changed since sent by Alice Cryptographic Hash: takes input m, produces fixed length value, H(m) e.g., as in Internet checksum computationally infeasible to find two different messages, x, y such that H(x) = H(y) equivalently: given m = H(x), (x unknown), can not determine x. note: Internet checksum fails this requirement! Message Integrity 8: Network Security
Internet checksum: poor crypto hash function Internet checksum has some properties of hash function: • produces fixed length digest (16-bit sum) of message • is many-to-one But given message with given hash value, it is easy to find another message with same hash value: ASCII format message ASCII format message I O U 9 0 0 . 1 9 B O B 49 4F 55 39 30 30 2E 31 39 42 4F 42 I O U 1 0 0 . 9 9 B O B 49 4F 55 31 30 30 2E 39 39 42 4F 42 B2 C1 D2 AC B2 C1 D2 AC different messages but identical checksums! 8: Network Security
Computationally expensive to public-key-encrypt long messages Goal: fixed-length, easy- to-compute digital “fingerprint” apply hash function H to m, get fixed size message digest, H(m). Hash function properties: many-to-1 But given message digest x = H(m), it’s infeasible to find m’ that H(m’) = H(m) Data integrity: cannot replace m with m’ Message Digests large message m H: Hash Function H(m) Ch8
H(.) public Internet m m m append H(.) H(m+s) H(m+s) H(m+s) H(m+s) compare Message Authentication Code (shared secret) s (message) s (shared secret) 8: Network Security
HMAC • Popular MAC standard • Addresses some subtle security flaws • Concatenates secret to front of message. • Hashes concatenated message • Concatenates the secret to front of digest • Hashes the combination again.
MD5 hash function widely used (RFC 1321) computes 128-bit MAC in 4-step process. arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x recent (2005) attacks on MD5 SHA-1 is also used US standard [NIST, FIPS PUB 180-1] 160-bit MAC Partial attack MACs in practice 8: Network Security
cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator. verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document Digital Signatures 8: Network Security
simple digital signature for message m: Bob “signs” m by encrypting with his private key KB, creating “signed” message, KB(m) - - K K B B Digital Signatures - - Bob’s private key Bob’s message, m (m) Dear Alice Oh, how I have missed you. I think of you all the time! …(blah blah blah) Bob Bob’s message, m, signed (encrypted) with his private key public key encryption algorithm 8: Network Security
suppose Alice receives msg m, digital signature KB(m) Alice verifies m signed by Bob by applying Bob’s public key KB to KB(m) then checks KB(KB(m) ) = m. if KB(KB(m) ) = m, whoever signed m must have used Bob’s private key. Alice thus verifies that: Bob signed m. No one else signed m. Bob signed m and not m’. non-repudiation: Alice can take m, and signature KB(m) to court and prove that Bob signed m. Digital Signatures (more) - - - + + - + - 8: Network Security
Digital signature = signed MAC H: hash function H: hash function large message m large message m + - digital signature (decrypt) digital signature (encrypt) K K B B encrypted msg digest encrypted msg digest + - - KB(H(m)) KB(H(m)) H(m) H(m) Bob sends digitally signed message: Alice verifies signature and integrity of digitally signed message: H(m) Bob’s private key Bob’s public key equal ? 8: Network Security
Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap1.0:Alice says “I am Alice” “I am Alice” Failure scenario?? 8: Network Security
Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap1.0:Alice says “I am Alice” in a network, Bob can not “see” Alice, so Trudy simply declares herself to be Alice “I am Alice” 8: Network Security
Alice’s IP address “I am Alice” Authentication: another try Protocol ap2.0:Alice says “I am Alice” in an IP packet containing her source IP address Failure scenario?? 8: Network Security
Alice’s IP address “I am Alice” Authentication: another try Protocol ap2.0:Alice says “I am Alice” in an IP packet containing her source IP address Trudy can create a packet “spoofing” Alice’s address 8: Network Security
Alice’s password Alice’s IP addr “I’m Alice” Alice’s IP addr OK Authentication: another try Protocol ap3.0:Alice says “I am Alice” and sends her (encrypted) secret password to “prove” it. Failure scenario?? 8: Network Security
Alice’s password Alice’s IP addr “I’m Alice” Alice’s IP addr OK Authentication: another try Protocol ap3.0:Alice says “I am Alice” and sends her (encrypted) secret password to “prove” it. Alice’s password Alice’s IP addr “I’m Alice” playback attack: Trudy records Alice’s packet and later plays it back to Bob 8: Network Security
K (R) A-B Authentication: yet another try Goal:avoid playback attack Nonce:number (R) used only once –in-a-lifetime ap4.0:to prove Alice “live”, Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key “I am Alice” R Alice is live, and only Alice knows key to encrypt nonce, so it must be Alice! Failures, drawbacks? 8: Network Security
Two-way Authentication 1 Request from Alice 2 & 4 Challege (a nonce) from Bob & Alice, resp 3 & 5 Response from Alice & Bob, resp (authenticated afterwards) Ch8
What if we do it in three steps? • Alice request and challenges Bob first • Bob responses (and get authenticated) and challenges Alice next • Alice responses (is she authenticated?) Ch8