1 / 33

Supernova and GRB remnants and their GeV-TeV g -ray emission

Supernova and GRB remnants and their GeV-TeV g -ray emission. Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State). 1. GRB/Hypernova remnants ~ TeV unID sources 2. A new mechanism for TeV g : Radio Isotope decay. Contents. TeV unidentified (TeV unID) sources

jarah
Download Presentation

Supernova and GRB remnants and their GeV-TeV g -ray emission

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Supernova and GRB remnantsand their GeV-TeV g-ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID sources 2. A new mechanism for TeV g: Radio Isotope decay

  2. Contents TeV unidentified (TeV unID) sources No counterpart, Origin unknown Gamma-Ray Burst (GRB) GRB-Supernova/Hypernova GRB/Hypernova remnant-TeV unID 1. p0 decay: Nobs(HNR)~Nobs(SNR) 2. b decay + e-Inverse Compton 3. Radio isotope (RI) decay

  3. Multi-wavelength sky Radio IR Opt X g New wavelength⇒New sources (GRB, pulsar, …)

  4. Increasing TeV sources “Kifune plot” Jim Hinton, rapporteurtalk, ICRC 2007 Most abundant category: unID! No clear counterparts at other wavelengths

  5. HESS Galactic survey

  6. Observed properties TeV unID Disk ⇒ Galactic origin Aha+ 06 Extended

  7. TeV g-ray Leptonic process (e with 10-100TeV) Synchrotron⇒X Inverse Compton⇒g Electron acceleration Synchrotron (X) Magnetic Field Inverse Compton (g) CMBg Hadronic process (p with 10-100TeV) pp⇒p0 decay⇒2g Proton acceleration p0 2g Nucleus p+

  8. SNR Koyama+ 05 Bamba+ 03 CR acceleration at SN shock Most likely Galactic CR origin Also likely TeV g sources Hwang+ 04 Aha+ 04

  9. Suzakuupper limit Suzaku⇒Strong X-ray upper limit FTeV/FX>50 ⇒ Leptonic × Hadronic ○ ⇒ Young SNR × TeV g X-ray Matsumoto+ 07 Bamba+ 07

  10. Old SNR? In old SNRs, emax,electron is low butp0g flux~const ⇒ FTeV/FX>100 Yamazaki+ 06 TeV X But, Rate~1/100yr⇒103 SNR ⇔ 10 unID

  11. GRB = Rare SN Luminosity The most luminous objects~1051erg/s >msec Afterglow GRB X Opt Radio Redshift ~1000 events/yr isotropic ~200 keV, nonthermal 10-3s~103s : Short, Long SN ~1day Time

  12. Standard model optically thick gg→e+e- Internal shock SN? ? ISM G>100 External shock Central Engine 光度 Afterglow Kinetic energy ↓ Shock dissipation GRB 時間

  13. GRB-SN Hjorth+(03) Afterglow Light curve Type Ic spectrum Bloom+(99) ⇒ GRB is associated with SN Ibc

  14. Collapsar Jet breaks out the massive stellar envelope

  15. GRB/Hypernova Hypernove (hyper-energetic SNe) occur more frequently than GRBs EHN~1052erg RSN~1/100yr RHN~1/104yr RGRB~1/105yr tage~105yr ⇒ NHN~10~NunID Nomoto+

  16. Old GRB/HN remnant g-ray Flux for pp→p0→2g Just by scaling the SNR calculations ~FunID CR energy~1051erg~10%x1052erg Flux: t-independent ⇒Old ones are dominated ⇒leptonic emission is weak (low emax,e) ⇒ unID Number Size R~1/104yr tage~105yr ⇒ NHN~10~NunID

  17. Observed number ratio Observed #(HNR)~Observed #(SNR) ① ~10times energy ⇒ dmax∝E1/2 ② Sensitivity to extended sources∝(size)∝d-1 ⇒ dmax∝E ⇒ Volume∝dmax2∝E2 Observable SNRs are nearby ⇒ Size is too large?

  18. GRB jet-Cosmic Ray SN shock Hillas diagram B GRB E<ZeBR Internal shock External shock also accelerate cosmic ray R RGRB~1/105yr ⇒ NGRB~1 but recent obs. suggest RGRB w/ slow jet~1/104yr~RHN

  19. GRB remnant (GRBR) Loeb & Perna 98 Wick, Dermer & Atoyan 04 Dermer & Atoyan 06 After non-rela ⇒ Jet→Sphere ⇒ GRBR~SNR hydrodynamically (cf., R~E1/5) Metal distribution could be different Ayal & Piran 01

  20. 1. p0 decay HESS J1301-631 SNR All Atoyan, Buckley & Krawczynski 06 Relativistic souces ⇒ less particle @ low E ⇒ Low GeV & Radio emission

  21. 2. b decay – e-IC ep~1016g7eV tdecay~900s pg→np+ g (CMB, …) Energy fraction of TeV g KI, Kobayashi & Mészáros 04

  22. Unique morphology KI, Kobayashi & Mészáros 04 W49B SNR Elongated emission outside SNR Age/Energy dependent profile Less e @ low E Dim @GeV & radio

  23. Candidate? Aha+ 06

  24. 3. Radio isotope (RI) decay 56Ni ⇐ SN light curve 1998bw: M(56Ni)~0.4M◉ ~2MeV Could be shock-accelerated before decay (by reverse shock?) No need for target g and matter

  25. SN light & RI decay NS/BH Nomoto+07 56Ni, 56Co decay ⇒SN light curve Complete Si burning⇒56Ni Fall back to central BH/NS

  26. Fe(56Ni) O Woosley & Zhang 07 Mazzali+05

  27. RI decay model 56Co case 56Co energy GRB jet OK SNR disappears Energy fraction of TeV g ~energetic GRB

  28. Spectrum tdecay~106g6yr eg~TeVg6 t nFn n(2-p)-1 Exp. cutoff Already decayed Now decaying ~GeV n ~TeV

  29. RI model spectrum 105yr p-2nd e+ Radio X

  30. Fe ? Auger Depth of air shower maximum

  31. Photo-disintegration Murase,KI+08 Wang, Razzaque & Mészáros 07 Ni/Co/Fe can survive photo-disintegration (⇔ Fe UHECR implied by Auger Xmax)

  32. Model identificaion Neutrino g Morphology p0 No n (Already decayed) b RI

  33. Summary TeV unID sources Dominant in TeV sky, Origin unknown Old GRB/Hypernova remnant Nobs(HNR)~Nobs(SNR) SNR may be more nearby and extended BH in unID? A new mechanism for g-ray production Decay of Accelerated Radio Isotope (RI) No need for target matter or photon

More Related