1 / 29

张云龙,王文骁,李翠

Study of Position Sensitive  E-E for Space Particle Telescope Pre-results of Geant4 simulation. 张云龙,王文骁,李翠. Motivation. Study of space science is in need of information of space particle(nuclide/ion). Important parameters: energy spectrum of particle and particle flux .

Download Presentation

张云龙,王文骁,李翠

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Study of Position Sensitive E-E for Space Particle TelescopePre-results of Geant4 simulation 张云龙,王文骁,李翠

  2. Motivation • Study of space science is in need of information of space particle(nuclide/ion). • Important parameters: energy spectrum of particle and particle flux. • First of all, identify particles. (Reconstruct Z and M in simulation.)

  3. Particle identification • Due to ionization , particle will deposit energy in detector, and detector can output signal. • The value of output signal in detector relevant to the incident particle’s charge, kinetic energy and so on. • With measured detector’s signal, the particle’s charge and mass could be identified. Energy loss of incident particle could be described by Bethe-Bloch formula. Bethe-Bloch formula:

  4. Telescope model z Elements’ thickness: First: 50m Second: 192m Third: 248m BGO: 63mm63mm40mm 90 80 Silicon detector 60 0.0 BGO y x

  5. H1H2H3 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 1 3 1 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 15.00 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 200. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 1 2 1 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 15.00 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 200. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000 • /gps/source/clear • /gps/source/add 1 • /gps/particle proton • /gps/pos/type Point • /gps/pos/centre 0. 0. 9.1 cm • /gps/ang/type iso • /gps/ang/mintheta 0.00 deg • /gps/ang/maxtheta 15.00 deg • /gps/ene/type Lin • /gps/ene/min 0. MeV • /gps/ene/max 200. MeV • /gps/ene/gradient 0. • /gps/ene/intercept 1. • /run/beamOn 20000

  6. Energy deposit in each Si Layer and BGO H1

  7. Energy deposit in each Si Layer and BGO H2

  8. Energy deposit in each Si Layer and BGO H3

  9. E VS Kinetic energy

  10. He3He4 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 2 3 2 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 15.00 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 400. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000 • /gps/source/clear • /gps/source/add 1 • /gps/particle alpha • #/gps/ion 2 4 2 0 • /gps/pos/type Point • /gps/pos/centre 0. 0. 9.1 cm • /gps/ang/type iso • /gps/ang/mintheta 0.00 deg • /gps/ang/maxtheta 15.00 deg • /gps/ene/type Lin • /gps/ene/min 0. MeV • /gps/ene/max 400. MeV • /gps/ene/gradient 0. • /gps/ene/intercept 1. • /run/beamOn 20000

  11. Energy deposit in each Si Layer and BGO He3

  12. Energy deposit in each Si Layer and BGO He4

  13. E VS Kinetic energy

  14. Li6Li7 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 3 7 3 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 0.01 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 500. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 10000 • /gps/source/clear • /gps/source/add 1 • /gps/particle ion • /gps/ion 3 6 3 0 • /gps/pos/type Point • /gps/pos/centre 0. 0. 9.1 cm • /gps/ang/type iso • /gps/ang/mintheta 0.00 deg • /gps/ang/maxtheta 0.01 deg • /gps/ene/type Lin • /gps/ene/min 0. MeV • /gps/ene/max 400. MeV • /gps/ene/gradient 0. • /gps/ene/intercept 1. • /run/beamOn 10000

  15. Energy deposit in each Si Layer and BGO Li6

  16. Energy deposit in each Si Layer and BGO Li7

  17. E VS Kinetic energy

  18. Be7Be9Be10

  19. B10B11

  20. C12C13C14

  21. Reconstruct Z NUCLEAR INSTRUMENTS AND METHODS 145(1977) 583-591 The final calculated particle identification value “PI” , approximately (AZ2)1/3

  22. PI calculation T1: thickness of E detector E1: E E2: total energy

  23. Reconstruct Z H2 H3 Li7 Be Li6 H1 He3 He4 B C

  24. Reconstruct M NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A 424(1999)414-424 • Once the charge (Z) has been identified, the mass M of the specific isotope can be reconstructed by means of the equation: • A precise evaluation of such parameters a and b for each atomic species has been obtained by a fit of the following expression: R: the measured range E: kinetic energy a: is a constant of the medium b: [1.5, 1.8]

  25. Measured range VS Kinetic energy proton alpha Be Li

  26. Measured range VS Kinetic energy B C

  27. Values of a&b

  28. mass He3 H1 H2 He4 H3

  29. mass Be7 Be9 Li6 Li7 Be10 C12 C13 C14 B10 B11

More Related