1 / 15

Surface Enhanced Raman Spectroscopy

Surface Enhanced Raman Spectroscopy. Jim Krier. Raman scattering. Scattering is typically 10 -6 lower in intensity than Rayleigh intensity (signal enhancement needed!) Difficult to differentiate among small molecules with similar covalent bonds Raman used as a complement to IR spectroscopy.

jamese
Download Presentation

Surface Enhanced Raman Spectroscopy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Surface Enhanced Raman Spectroscopy Jim Krier

  2. Raman scattering Scattering is typically 10-6 lower in intensity than Rayleigh intensity (signal enhancement needed!) Difficult to differentiate among small molecules with similar covalent bonds Raman used as a complement to IR spectroscopy commons.wikimedia.org; “Physical Chemistry” by Mortimer, 2000.

  3. SERS enhancement First reported by Martin Fleishman in 1974 Electric field enhancement from plasmon excitation Directionality of adsorbates/phonons is a critical element of enhancement factor (EF) In effect, plasmons convert the Rayleigh signal to a Stokes shift Prokes, S.M.; Glembocki, O.J.; Rendell, R.W. NRL Review 2007, 175.

  4. Orientation issues Visible laser Pyridine Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Chem. Phys. Lett .1974, 26,163.

  5. Rhodamine 6G Hildebrandt, P.; Stockburger, M. J. Phys. Chem. 1984, 88, 5935.

  6. Tao, T.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Yugang, S.; Younan, X.; Yang, P. Nano Lett. 2003, 3, 1229.

  7. Langmuir-Blodgett trough Tao, T.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Yugang, S.; Younan, X.; Yang, P. Nano Lett. 2003, 3, 1229.

  8. “Logs-on-a-river” Tao, T.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Yugang, S.; Younan, X.; Yang, P. Nano Lett. 2003, 3, 1229.

  9. R6G detection EF ~ 2 x 109 Tao, T.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Yugang, S.; Younan, X.; Yang, P. Nano Lett. 2003, 3, 1229.

  10. 2,4-Dinitrotoluene detection NO2 stretching mode EF ~ 2 x 105 ~ 0.7 picogram sensitivity Tao, T.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Yugang, S.; Younan, X.; Yang, P. Nano Lett. 2003, 3, 1229.

  11. Advantages of nanowire monolayers Well defined, reproducible media that can be put atop a variety of solid materials Geometric structure allows larger electric field enhancement compared to nanospheres Can be used to detect analytes which are air-bourne or in solution Prokes, S.M.; Glembocki, O.J.; Rendell, R.W. NRL Review 2007, 175.

  12. Cao, Y.C.; Jin, R.; Mirkin, C.A. Science2002, 297, 1536.

  13. Dye tagging Cao, Y.C.; Jin, R.; Mirkin, C.A. Science2002, 297, 1536.

  14. Cao, Y.C.; Jin, R.; Mirkin, C.A. Science2002, 297, 1536.

  15. Further reading … Tao, T.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Yugang, S.; Younan, X.; Yang, P. Nano Lett. 2003, 3, 1229. Cao, Y.C.; Jin, R.; Mirkin, C.A. Science2002, 297, 1536. SERS review article: Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. J. Phys.: Condens. Matter 2002, 14, R597.

More Related