slide1
Download
Skip this Video
Download Presentation
我國 6Bone 規劃及建置經驗

Loading in 2 Seconds...

play fullscreen
1 / 68

我國 6Bone 規劃及建置經驗 - PowerPoint PPT Presentation


  • 182 Views
  • Uploaded on

我國 6Bone 規劃及建置經驗. 中華電信研究所 前瞻技術研究室 嚴劍琴 中華民國八十九年十月十九日. Contents. IPv6 通訊協定簡介 Worldwide Testbed -- 6Bone IPv6 推廣現況 國外 IPv6 發展現況 我國 IPv6 發展及建置經驗 總結. IPv6 通訊協定簡介. Introduction. Driving motivation: Limitation imposed by the 32-bit address in IPv4

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about '我國 6Bone 規劃及建置經驗' - jadyn


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1
我國6Bone規劃及建置經驗

中華電信研究所

前瞻技術研究室

嚴劍琴

中華民國八十九年十月十九日

contents
Contents
  • IPv6 通訊協定簡介
  • Worldwide Testbed -- 6Bone
  • IPv6 推廣現況
  • 國外 IPv6 發展現況
  • 我國 IPv6 發展及建置經驗
  • 總結
introduction
Introduction
  • Driving motivation: Limitation imposed by the 32-bit address in IPv4
    • NAT(Network Access Translator) is a short-term solution but not the best
  • To provide a platform for new Internet Functionality Improvement rather than derivative of IPv4
    • Addressing Capacity, Routing Capacity, Support for QoS, Auto-configuration, Security inter-operability and so on
  • Related IETF working Groups
    • IPng (ipngwg) working group under Internet Area
    • IPng Transition (ngtrans) working group under Operations and Management Area
ipv6 vs ipv4 packet data unit
IPv6 vs. IPv4 Packet Data Unit

maximum

65535 octets

minimum

20 octets

IPv4 Header

Data Field

IPv4 PDU

maximum

65535 octets

Fixed

40 octets

0 or more

IPv6 Header

Extension

Header

Extension

Header

Transport-level PDU

IPv6 PDU

slide6
IPv4 vs. IPv6 Header

IPv4 Packet Header

IPv6 Packet Header

Service

Type

Traffic Class

Ver IHL

Total Length

Ver

Flow Label

Next Header

Hop Limit

Identification

Flags

Offset

Payload Length

TTL

Protocol

Header Checksum

Source Address

Source Address

Destination Address

Options + Padding

32 bits

Destination Address

ipv6 extension headers 1 2
IPv6 Extension Headers (1/2)
  • Hop-by-hop options header
  • Routing header
  • Fragment header
  • Authentication header
  • Encapsulating security payload header
  • Destination options header

40 octets

0 or more

IPv6 Header

Extension

Header

Extension

Header

Transport-level PDU

IPv6 PDU general form

ipv6 extension headers 2 2
IPv6 Extension Headers (2/2)

Octets:

  • IPv6 specification recommended order:
    • IPv6 header
    • Hop-by-hop options header
    • Destination options header
    • Routing header
    • Fragment header
    • Authentication header
    • Encapsulation security payload header
    • Destination options header

40

IPv6 header

Variable

Hop-by-hop options header

Variable

Routing header

8

Fragment header

Variable

Authentication header

Variable

Encap security payload header

Variable

Destination options header

20 (optional variable part)

TCP header

Variable

Application data

= Next header field

IPv6 packet with all extension headers

packet format of ipv6 vs ipv4
Packet Format of IPv6 vs. IPv4
  • Header size becomes fixed
    • Option fields are replaced by extension headers
      • hop-by-hop, routing header, fragment header, authentication header, encapsulating security payload, destination options header
  • Decreased number of field, increased total size
    • Six fields are suppressed
      • IP header length, type of service, identification, flags, fragment offset, header checksum
    • Three fields are renamed
      • Total length: payload length
      • Protocol type: next header
      • Time to live: hop limit
    • Two fields are added
      • traffic class, flow label
addressing features
Addressing Features
  • Address Capacity
    • 32-bit address  128-bit address
    • Give brand-new start for address aggregation (CIDR, Classless Inter-Domain Routing)
  • Addressing Capability
    • Unicast, Anycast and Multicast
  • Anycast address
    • More efficient routing (intermediate nodes)
    • More efficient access to mirrored servers (destination nodes)
  • Single interface with multiple address
    • support renumbering in a nondisruptive manner
routing capability
Routing Capability
  • Size of packet header is fixed
  • Revised option mechanism
    • Most bypassed by routers
    • Hint in header (Routing option)
  • The number of fields in packet header is reduced
    • 12 fixed + options 8 fixed
    • Suppressed: header length, type of service, identification, flag, fragment offset, header checksum
    • Modified: length, protocol type, time to live
    • Added: priority, flow label
  • Packet fragmentation is not allowed by routers
    • Path MTU (Max. Transfer Units) discovery protocol
    • At least 1280 octets
more flexible for qos mechanism
More Flexible for QoS Mechanism
  • New “Flow” concept
    • Defined by source address + flow label
    • Routing only on flow

DA, priority, hop-by-hop, routing option must be the same on a given flow

  • When used with RSVP
    • DA+SA(+DP+SP) SA+flow label
    • Solve layer violation with routers
    • Still work with encryption
  • Can be used with other Reservation Procedures
    • Define QoS of a flow in hop-by-hop options
other improvements
Other Improvements
  • More flexible Autoconfiguration
    • Stateless autoconfiguration (New)
    • Stateful autoconfiguration (V6 version of DHCP, Dynamic Host Configuration Protocol)
  • Improved Support for Security, Mobility and ARP, etc.
    • Provide inter-operability
    • more efficient process
transition mechanism 1 2
Transition Mechanism (1/2)
  • Simple Internet Transition (SIT)
    • Dual-stack strategies
    • IPv6-over-IPv4 Tunneling
  • Important features
    • Incremental upgrade and deployment
    • Minimal upgrade dependencies
    • Easy Addressing
    • Low start-up costs
  • Tunneling techniques
    • Configured Tunneling
      • Tunnel end point address should be determined from configuration information on tunnel starting point
      • For Host-to-Router and Router-to-Router tunnel
transition mechanism 2 2
0:0:0:0:0:0

IPv4 Address

Transition Mechanism (2/2)
  • Automatic Tunneling
    • IPv4-compatible IPv6 address is used as IPv6 destination address
    • For Host-to-Host and Router-to-Host tunnel

Dual-stack

node

Dual-stack

node

IPv4 Tunnel

Dual-stack

node

IPv6 H

Payload

IPv6 H

Payload

IPv4 H

IPv6 H

Payload

6bone 1 2
6Bone (1/2)
  • A worldwide testbed : http://www.6bone.net/
  • Virtual network
    • Layered on IPv4-based Internet to support routing of IPv6 packets
    • To provide the early policies and procedures for IPv6 transport
  • Operational from June/July on 1996
  • Will be replaced in a transparent way by
    • Production ISP
    • User network IPv6 Internet-wide transport
  • Addressing Architecture
    • global aggregatable unicast address
    • TLA 0x1FFE is assigned to 6Bone by IANA for testing
6bone 2 2
6Bone (2/2)
  • Three types of sites
    • Backbone Site (pTLA sites)
      • With its own pTLA assignments
      • To aggregate routing for other transit sites or leaf sites
      • With BGP4+ peering with a couple of backbone sites
    • Transit Site
      • To aggregate routing for leaf sites
      • with at least one BGP4+ peering with its backbone site
    • Leaf Site
      • With static route peering
6bone architecture
IPv6 island

IPv6 island

IPv6 island

IPv6 island

IPv6 island

6Bone Architecture

Backbone Site

Backbone Site

Leaf Site

Tunnel

(BGP4+)

Tunnel

(BGP4+)

IPv4 network

Tunnel

(Static)

Backbone Site

Transit Site

6bone test address
6Bone Test Address

128

001 TLA RES NLA SLA Interface ID

001 0x1ffe NLA1 NLA2 SLA Interface ID

13

8

24

16

64

3FFE:3600::/24 CHT-TL

how to join the 6bone
How to join the 6bone
  • EQUIPMENT NEEDS
    • ROUTERS
    • WORKSTATIONS
  • FINDING A POINT ON THE 6BONE TO ATTACH TO
  • MAKING 6BONE REGISTRY ENTRIES FOR YOUR SITE
  • CONFIGURING YOUR IPv6 ROUTER AND WORKSTATION
  • GETTING IPv6 ADDRESSES AND BUILDING YOUR TUNNEL TO THE 6BONE
  • DNS SUPPORT
ipv6 1 2
IPv6相關組織 (1/2)
  • Organizations are set up to promote the deployment of IPv6 network
    • 6REN
      • CAIRN, CANARIE, CERNET, CHT, DANTE, ESnet, FREEnet, Internet2, NTT, Sprint, vBNS, WIDE, ...
    • IPv6 Forum (Funding members: 51, General members:28)
  • IANA begins to delegate the IPv6 address space to the ARIN 、 RIPE NCC and APNIC RIRs (regional Internet registries) since July 1999
    • APNIC
      • CONNECT-AU、 WIDE-JP 、 NUS-SG、 KIX-KR 、 JENS-JP 、 NTT-JP 、 HINET-TW 、 ...
    • ARIN
      • ESNET-V6 、 ARIN、 VBNS 、 CANET3
ipv6 2 2
IPv6相關組織 (2/2)
    • RIPE
      • DE-SPACE 、 EU-UUNET 、 UK-BT 、 CH-SWITCH 、 AT-ACONET 、 UK-JANET 、 DE-DFN 、 NL-SURFNET 、 RU-FREENET 、...
  • Emerging Products and Equipment
    • Router
      • Telebit、Bay、Cisco (Beta) 、Hitachi (NR60) ….
    • Host
      • Window NT 、Linux 、Sun Solaris 、HP …..
6ren 1 2
6REN (1/2)
  • 6REN (IPv6 Research & Education Network) is established in October of 1998
  • Primary Goals
    • To provide production quality IPv6 packet delivery services
    • To develop operational procedures for IPv6 networks
    • To promote the deployment of IPv6 networks
    • To enable early IPv6-ready application testing and deployment
  • A voluntary coordination without fee
    • Participates must use production IPv6 addresses and provide production quality IPv6 service.
  • The “6Tap” project sponsored by Canarie and ESnet
    • To facilitate the easy interconnection of 6REN participants
    • Over ATM interconnections
6ren 2 2
6REN (2/2)

native IPv6 BGP

peering sessions

Native

IPv6 peers

6TAP

router

ATM switch

for IPv6

@star tap

Wide area ATM links from

StarTAP participants worldwide

Local OC3 link

Native

IPv6 peer

ATM PVCs

pre-configured

ipv6 forum
IPv6 Forum
  • Established in April 1999 by Internet vendors and research and education networks
    • IBM, Cisco, Compaq, HP, Sun, MCIWorldcom, Microsoft, UUNET, Telebit Communications, Thomson CSF, Case, Acer, NTT, Hitachi, French G6, 6REN, WIDE of Japan, ...
  • To dramatically improve the market and user awareness of IPv6
    • by providing world-wide, equitable access to knowledge and technology
    • to work closely with the Internet Engineering Task Force (IETF)
  • The membership fee per organization is US$ 2500, per annum.
production ipv6 address 1 2
Production IPv6 Address (1/2)
  • Assign sub-TLA to applicants
    • Slow Start Mechanism are used
      • To issue small address blocks until the provider can show an immediate requirement for larger blocks.
    • The first allocation to a TLA registry will be a 2001::/35 block
    • Right now, in Bootstrap Phase

FP TLA Res NLA SLA Interface ID

8

24

16

13

64

001 0x0001 sub-TLA Res NLA SLA Interface ID

16

13

13

13

6

64

production ipv6 address 2 2
Production IPv6 Address (2/2)
  • Examples of assigned sub-TLAs
    • APNIC
      • ETRI-KRNIC-KR-19991124 2001:230::/35
      • NTT-JP-19990922 2001:218::/35
      • HINET-TW-20000208 2001:238::/35
      • CONNECT-CC-AU 2001:0210::/35
    • ARIN
      • ESNET-V6 2001:0400::/35
      • ARIN-001 2001:0400::/23
      • VBNS-IPV6 2001:0408::/35
      • CANET3-IPV6 2001:0410::/35
    • RIPE-NCC
      • DE-SPACE-19990812 2001:0608::/35
      • UK-BT-19990903 2001:0618::/35
      • CH-SWITCH-19990903 2001:0620::/35
      • AT-ACONET-19990920 2001:0628::/35
wide v6 working group
WIDE v6 Working Group
  • WIDE-sTLA internal structure
  • <2><---0----0----1> <-0----2----0--><-RES-><--------------->
  • <2><---0----0----1> <-0----2----0---0---0-><-----WIDE------>
  • 0010|0000|0000|0001|0000|0010|0000|0000|0000|0000|0000|0000|
  • <-APNIC> <--NLA2--->
  • /16 /24 /32 /35 /40 /48
  • BackBone Infrastructure
  • 2001:200:0:XX::/48
  • All WIDE POPs are allocated this address w/ XX(POP#)
  • for WIDE BoneBone Infrastructure.
  • NLA1(Next Level Aggregator 1)
  • 2001:200:[0-1]x00::/40
  • x=1->f (0 is reservation for WIDE BackBone)
  • WIDE-NLA1 2001:200:0100::/40
  • allocate WIDE-NLA2(/48) for other organizations.
  • POP(Point Of Presence)
  • 5bit boundary
  • 2001:200:01yy::/45
  • yy=0->f
  • NLA2
  • 2001:200:01yz::/48
  • y:POP number
  • z:Orgnizatrion ID[0-8](identify in one POP)
wide v6 working group1
WIDE v6 Working Group
  • [WIDE INTERNAL]
  • WIDE-CAMP 2001:0200:0000:ff00::/56 2000/06/26
  • NSPIXP6 2001:0200:0000:1800::/64 1999/10/
  • SFC-U-TOKYO-VLAN 2001:0200:0000:1c04::/64 2000/06/12
  • [NLA2]
  • org name ipv6 address connect-pop link issue date
  • ================ ================ ============ ======== ==========
  • nui-org-net 2001:0200:0140::/48 komatsu tunnel 2000/01/14
  • SonyCSL-NET 2001:0200:0120::/48 otemachi ATM 2000/01/14
  • Ehime Univ. 2001:0200:0150::/48 hiroshima tunnel 2000/02/02
  • Tokyo Univ. 2001:0200:0180::/48 nezu tunnel 2000/02/02
  • Uwajima Internet Community 2001:0200:0121::/48 otemachi tunnel 2000/02/03
  • Uwajima Municipal Hospital 2001:0200:0122::/48 otemachi tunnel 2000/02/03
  • N+I Shownet 2001:0200:0123::/48 otemachi ether 2000/02/08
  • JSAT-NET 2001:0200:0124::/48 otemachi ATM 2000/03/30
  • WASEDA-NET 2001:0200:0125::/48 otemachi tunnel 2000/04/09
  • Tokyo University of Technology 2001:0200:01a8::/48 hachioji tunnel 2000/04/19
  • TNT-WIDE 2001:0200:0148::/48 kyoto ether 2000/06/09
  • YDC-WIDE-IPV6-01 2001:0200:0100::/48 Tokyo Serial 2000/07/24
  • NABECHAN.ORG 2001:0200:0126::/48 otemachi tunnel 2000/07/24
  • RESEARCHLAB-NET 2001:0200:0127::/48 otemachi tunnel 2000/07/26
  • [NLA1]
  • org name ipv6 address connect-pop link issue date db
  • ================ ================ ============ ======== ========== ==
  • WIDE-NLA1 2001:0200:0100::/40 otemachi 2001/01/14 yes
  • ITJIT-NET 2001:0200:0200::/40 otemachi tunnel 2000/01/14 yes
  • IMASY 2001:0200:0300::/40 otemachi tunnel 2000/01/20 yes
  • NTTv6Net 2001:0200:0400::/40 tokyo T1 2000/01/25 no
  • INTEC 2001:0200:0500::/40 otemachi ether 2000/02/09 no
  • KDD-Labs 2001:0200:0600::/40 otemachi tunnel 2000/02/09 yes
  • NTT-MY 2001:0200:0700::/40 otemachi ATM 2000/02/21 yes
  • AIII 2001:0200:0800::/40 Nara Ether 2000/04/18 yes
  • APAN 2001:0200:0900::/40 otemachi ATM 2000/05/11 yes
etri advance standards research team
ETRI Advance Standards Research Team
  • Head : Kim, Yong-Jin
  • Reserch Issues
    • IPv4/IPv6 Next Generation Internet Address Translator
    • Standardization planning of Next Generation Mobile Communications
    • Standardization of Next Generation Internet Protocols
  • Related Information
    • Research Results
    • IPv6 Forum Korea
    • ITU-T SG13/Q.20
    • Simulation Study Group
    • OSIA TG-Deployment
  • http://pec.etri.re.kr/index2.htm
cernet ipv6 testbed
CERNET IPv6 Testbed
  • 預計2000年底將實現的結構
cernet ipv6 testbed1
CERNET IPv6 Testbed
  • 試驗床的内部實現拓樸(1)
cernet ipv6 testbed2
CERNET IPv6 Testbed
  • 試驗床的内部實現拓樸(2)
esnet v6
ESNET-V6
  • ESnet is working to make this transition from IPv4 to IPv6 as seemless as possible for our customers. We are one of the few Internet Service Providers to be a participate in the 6Bone backbone. Our engineering staff is also testing many of the network services we are all familiar in an IPv6 environment.
  • 6Bone
  • 6Tap
  • 6ren
  • Whois Server
  • Tunnel Registration
  • Address Delegation
  • http://www.es.net/hypertext/welcome/pr/ipv6.html
uk bt nat pt project
UK-BT NAT-PT Project
  • BT Labs have developed an implementation of NAT-PT designed to run on a router running the FreeBSD operating system and using the KAME IPv6 stack.
  • We are making this implementation available for download to promote its use as an IPv4/IPv6 interoperability mechanism.
  • http://www.labs.bt.com/projects/nat_pt/index.htm
switch ipv6 pilot
SWITCH IPv6 Pilot
  • SWITCH has been assigned an experimental pseudo-TLA (pTLA) for use on the 6bone. The prefix of this pTLA is 3ffe:2000::/24. The following prefixes under the pTLA have been assigned to sites that are connected to the 6bone via SWITCH:
  • 3ffe:2000:0000::/48 SWITCH
  • 3ffe:2000:0400::/48 ETHZ
  • 3ffe:2010:0000::/48 EPFL
  • 3ffe:2000:0c00::/48 UniBE
  • 3ffe:2022:0001::/48 ISBE
  • 3ffe:2000:1000::/48 TLAB-CHUR
  • 3ffe:2022:0003::/48 FH-Aargau
  • 3ffe:2022:f000::/48 TELEPORT
  • 3ffe:2024:0001::/48 TK-LINZ
  • 3ffe:2028:0001::/48 SIMMCOMM
  • 3ffe:2028:1000::/36 SOLNET
  • 3ffe:202a:0001::/48 SIMULTAN
  • 3ffe:202a:0002::/48 TILINK
uk janet
UK-JANET
  • The JANET Managed Bandwidth Service, initial trials are now taking place in the UK. Southampton has a 512Kbit MBS link to the European TF-TANT network.
  • Southampton, UCL and Lancaster are embarking on a triangular IPv6 network over JANET, a project which should lead to IPv6 connectivity to Internet 2.
  • Numerous router and workstation/OS vendors already support IPv6; these trials will report on interoperability issues and application developments.
  • http://www.ja.net/conferences/networkshop/abstracts/ipv6.html
canarie the quake game on ipv6
Canarie-The Quake game on IPv6
  • Typical architectures to play Quake over IPv6
ipv6 in cht tl
IPv6 in CHT-TL
  • As a leaf site since 1997/12
  • As a transit sit since 1998/11
  • As a backbone site since 1999/02
  • Related works
    • Get 3FFE:3600::/24 address space and delegate sub-space to others
    • Set up IPv6 testbed and provide transit service
    • Set up the DNS server supporting AAAA records
    • Set up a WWW server supporting IPv4/IPv6 simultaneously
    • monitor the transit traffic
  • IPv6 address from APNIC (2000/02)
    • inet6num: 2001:238::/35
    • netname: HINET-TW-20000208
slide55
CHTTL-TW in 6Bone
  • Become backbone site in 1999 February
    • Register as CHTTL-TW
    • Get 3FFE:3600::/24 address prefix
    • Has built BGP4+ tunnel with some other backbone sites such as Sprint, Viagenie, Cisco, Digital-CA and Telebit, etc.
  • Provide stable transit service to other sites
    • 3ffe:3600:1::/48 for NDHU
    • 3ffe:3600:2::/48 for CCITT
    • 3ffe:3600:3::/48 for NCKU … etc.
  • Set up IPv6 TestBed
    • Autoconfiguration
    • DNS server supporting AAAA records
    • IPv6 Web server at http://march.ipv6.chttl.com.tw
6bone
中華電信 6Bone註冊

http://www.cs-ipv6.lancs.ac.uk/ipv6/6Bone/Whois/CHTTL-TW.html

slide57
中華電信 6Bone 位址分配圖 (1/3)

128

001 TLA RES NLA SLA Interface ID

001 0x1ffe NLA1 NLA2 SLA Interface ID

13

8

24

16

64

3FFE:3600::/24 CHT-TL

3FFE:3600:0000::/32 for tunneling and universities

3FFE:3600:0100::/32 for CHT business groups and subordinates

6bone 2 3
中華電信 6Bone 位址分配圖 (2/3)

128

001 TLA RES NLA SLA Interface ID

001 0x1ffe NLA1 NLA2 SLA Interface ID

13

8

24

16

64

3FFE:3600:0000::/48 reserved

3FFE:3600:0001::/48 for NDHU 東華大學

3FFE:3600:0002::/48 for CCIT 中正理工學院

3FFE:3600:0003::/48 for NCKU 成功大學

3FFE:3600:0004::/48 for NCU-CSIE中央大學

3FFE:3600:0005::/48 for NCU-CC 中央大學

3FFE:3600:0006::/48 for NTU 臺灣大學

3FFE:3600:0007::/48 for 中正大學

3FFE:3600::/24 CHT-TL

6bone 3 3
中華電信 6Bone 位址分配圖 (3/3)

128

001 TLA RES NLA SLA Interface ID

001 0x1ffe NLA1 NLA2 SLA Interface ID

13

8

24

16

64

3FFE:3600:0100::/48 for 總公司

3FFE:3600:0101::/48 for 北區電信分公司

3FFE:3600:0102::/48 for 中區電信分公司

3FFE:3600:0103::/48 for 南區電信分公司

3FFE:3600:0104::/48 for 數據通信分公司

3FFE:3600:0105::/48 for 長途及行動電信分公司

3FFE:3600:0106::/48 for 訓練所

3FFE:3600:0107::/48 for 國際電信分公司

3FFE:3600::/24 CHT-TL

slide60
中華電信IPv6測試平臺

東華大學

IPv6

router

IPv6-over-IPv4 tunnels

中正理工學院

成功大學

TANET

中央大學

臺灣大學

HiNet

INQMS

server

Telebit

NUS-IRDU(SG)

Sprint

IPv4 Internet

Cisco

ETRI(KR)

Digital-CA

Viagenie

NTT-ECL(JP)

slide61
中華電信

CHT-TL

中央-1

NCU-1

台大

NTU

中央-2

NCU-2

中正理工

CCIT

東華

NDHU

中正

CCU

成大

NCKU

中華電信6Bone網路Tunnels建置圖

Telebit(Denmark)

3ffe:0100::/24

Viagenie(Canada)

3ffe:0b00::/24

Sprint(USA)

3ffe:2900::/24

NTT-ECL (JP) 3FFE:1800::/24

ETRI (KR ) 3FFE:2E00::/24

Cisco(USA)

3ffe:0c00::/24

CHTTL-TW

3ffe:3600::/24

2001:238::/35

Digital-CA(USA)

3ffe:1200::/24

NUS-IRDU(SG)

3ffe:1600::/24

slide62
中央大學

成功大學

東華大學

NCU

3ffe:3600:4::/48

3ffe:3600:5::/48

NCKU

3ffe:3600:3::/48

NDHU

3ffe:3600:1::/48

中正理工學院

CCIT

3ffe:3600:2::/48

臺灣大學

NTU

3ffe:3600:6::/48

中華電信6Bone網路Tunnels示意圖

BGP4+

Telebit(Denmark)

3ffe:0100::/24

CHTTL-TW

3ffe:3600::/24

2001:238::/35

Sprint(USA)

3ffe:2900::/24

Viagenie(Canada)

3ffe:0b00::/24

static

Cisco(USA)

3ffe:0c00::/24

Digital-CA(USA)

3ffe:1200::/24

NUS-IRDU (SG)

3ffe:1600::/24

ETRI (KR ) 3FFE:2E00::/24

中正大學

CCU

3ffe:3600:7::/48

NTT-ECL(JP) 3FFE:1800::/24

ipv6 dns server
march.ipv6.chttl.com.tw 5FFE:1200:3001:0:0080:c8FF:FE33:FA93IPv6 DNS Server

chttl.com.tw

IPv6

march

renault

march

renault

cht tl ipv6 www server
CHT-TL IPv6 WWW Server

http://cht-6bone.chttl.com.tw

slide65
IPv6 Traffic to Other Backbone Sites
  • BGP4+ KeepAlive/Update
    • TCP port 179
  • ICMPv6 Echo request/reply
    • Generated by ping application
slide66
Domestic IPv6 Traffic
  • Traffic is extremely low
  • ICMPv6 Echo request/reply
    • Generated by ping application
slide68
結論
  • IPv6 可徹底解決IP位址不足的問題,同時為下一代網際網路提供一較佳之使用平臺
  • IPv6目前已由測試階段進入初期商用建置階段
  • IANA開始接受IPv6商用申請
  • 國內IPv6技術,主要仍在學術研究方面,此亦為 NBEN 之一重要主題。
  • TWNIC正全力推展IPv6技術及整合國內ISPs 及相關產業進入的IPv6的世界