introduction to semantics and pragmatics l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Introduction to Semantics and Pragmatics PowerPoint Presentation
Download Presentation
Introduction to Semantics and Pragmatics

Loading in 2 Seconds...

play fullscreen
1 / 35

Introduction to Semantics and Pragmatics - PowerPoint PPT Presentation


  • 268 Views
  • Uploaded on

Introduction to Semantics and Pragmatics. NLP tends to focus on:. Syntax Grammars, parsers, parse trees, dependency structures Semantics Subcategorization frames, semantic classes, ontologies, formal semantics Pragmatics Pronouns, reference resolution, discourse models.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Introduction to Semantics and Pragmatics' - jacob


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
nlp tends to focus on
NLP tends to focus on:
  • Syntax
    • Grammars, parsers, parse trees, dependency structures
  • Semantics
    • Subcategorization frames, semantic classes, ontologies, formal semantics
  • Pragmatics
    • Pronouns, reference resolution, discourse models

NLP

semantics and pragmatics
Semantics and Pragmatics

High-level Linguistics (the good stuff!)

Semantics: the study of meaning that can be determined from a sentence, phrase or word.

Pragmatics: the study of meaning, as it depends on context (speaker, situation)

NLP

language to logic
Language to Logic
  • John went to the book store.

Johnstore1, go(John, store1)

  • John bought a book.

buy(John,book1)

  • John gave the book to Mary.

give(John,book1,Mary)

  • Mary put the book on the table.

put(Mary,book1,table1)

NLP

semantics same event different sentences
SemanticsSame event - different sentences
  • John broke the window with a hammer.
  • John broke the window with the crack.
  • The hammer broke the window.
  • The window broke.

NLP

same event different syntactic frames
Same event - different syntactic frames
  • John broke the window with a hammer.
  • SUBJ VERB OBJ MODIFIER
  • John broke the window with the crack.
  • SUBJ VERB OBJ MODIFIER
  • The hammer broke the window.
  • SUBJ VERB OBJ
  • The window broke.
  • SUBJ VERB

NLP

semantics predicate arguments
Semantics -predicate arguments
  • break(AGENT, INSTRUMENT, PATIENT)
  • AGENT PATIENT INSTRUMENT
  • John broke the window with a hammer.
  • INSTRUMENT PATIENT
  • The hammer broke the window.
  • PATIENT
  • The window broke.
        • Fillmore 68 - The case for case

NLP

slide8
AGENT PATIENT INSTRUMENT
  • John broke the window with a hammer.
  • SUBJ OBJ MODIFIER
  • INSTRUMENT PATIENT
  • The hammer broke the window.
  • SUBJ OBJ
  • PATIENT
  • The window broke.
  • SUBJ

NLP

natural language processing applications and tasks
Natural Language Processing Applications and Tasks
  • Machine Translation
  • Question-Answering
  • Information Retrieval
  • Information Extraction

NLP

machine translation
Machine Translation
  • One of the first applications for computers
    • bilingual dictionary > word-word translation
  • Good translation requires understanding!
    • War and Peace, The Sound and The Fury?
  • What can we do? Sublanguages.
    • technical domains, static vocabulary
    • Meteo in Canada, Caterpillar Tractor Manuals, Botanical descriptions, Military Messages

NLP

machine translation12
Machine Translation
  • The Story of the Stone
    • =The Dream of the Red Chamber (Cao Xueqin 1792)
  • Issues: (“Language Divergences”)
    • Sentence segmentation
    • Zero-anaphora
    • Coding of tense/aspect
        • Penetrate -> penetrated
    • Stylistic differences across languages
      • Bamboo tip plaintain leaf -> bamboos and plantains
    • Cultural knowledge
      • Curtain -> curtains of her bed
machine translation13
Machine Translation
  • Chinese gloss: Dai-yu alone on bed top think-of-with-gratitude Bao-chai again listen to window outside bamboo tip plantain leaf of on-top rain sound sigh drop clear cold penetrate curtain not feeling again fall down tears come
  • Hawkes translation: As she lay there alone, Dai-yu’s thoughts turned to Bao-chai… Then she listened to the insistent rustle of the rain on the bamboos and plantains outside her window. The coldness penetrated the curtains of her bed. Almost without noticing it she had begun to cry.
babelfish demo
Babelfish Demo

http://babelfish.yahoo.com/

Old example:

The spirit is willing, but the flesh is weak.

question answering
Question Answering
  • What does “door” mean?
  • What year was Abraham Lincoln born?
  • How many states were in the United States when Lincoln was born?
  • Was there a military draft during the Hoover administration?
  • What do US scientists think about whether human cloning should be legal?
modern qa systems
Modern QA systems
  • Still in infancy
  • Simple factoid questions beginning to work OK
  • Annual government-sponsored “bakeoff” called TREC
qa demo
QA Demo

UIUC QA Demo

Qualim QA Demo

issues in nlp
Issues in NLP
  • Ambiguity!
  • World Knowledge – it’s needed for understanding, but computers don’t have it

NLP

ambiguity
Ambiguity
  • Computational linguists are obsessed with ambiguity
  • Ambiguity is a fundamental problem of computational linguistics
  • Resolving ambiguity is a crucial goal
ambiguity21
Ambiguity
  • Find at least 5 meanings of this sentence:
    • I made her duck
ambiguity22
Ambiguity
  • Find at least 5 meanings of this sentence:
    • I made her duck
  • I cooked waterfowl for her benefit (to eat)
  • I cooked waterfowl belonging to her
  • I created the (plaster?) duck she owns
  • I caused her to quickly lower her head or body
  • I waved my magic wand and turned her into undifferentiated waterfowl
  • At least one other meaning that’s inappropriate for gentle company.
ambiguity is pervasive
Ambiguity is Pervasive
  • I caused her to quickly lower her head or body
    • Lexical category: “duck” can be a N or V
  • I cooked waterfowl belonging to her.
    • Lexical category: “her” can be a possessive (“of her”) or dative (“for her”) pronoun
  • I made the (plaster) duck statue she owns
    • Lexical Semantics: “make” can mean “create” or “cook”
ambiguity is pervasive24
Ambiguity is Pervasive
  • Grammar: Make can be:
    • Transitive: (verb has a noun direct object)
      • I cooked [waterfowl belonging to her]
    • Ditransitive: (verb has 2 noun objects)
      • I made [her] (into) [undifferentiated waterfowl]
    • Action-transitive (verb has a direct object and another verb)
    • I caused [her] [to move her body]
ambiguity is pervasive25
Ambiguity is Pervasive
  • Phonetics!
    • I mate or duck
    • I’m eight or duck
    • Eye maid; her duck
    • Aye mate, her duck
    • I maid her duck
    • I’m aid her duck
    • I mate her duck
    • I’m ate her duck
    • I’m ate or duck
    • I mate or duck
headlines
Headlines
  • Police Begin Campaign To Run Down Jaywalkers
  • Iraqi Head Seeks Arms
  • Teacher Strikes Idle Kids
  • Miners Refuse To Work After Death
  • Juvenile Court To Try Shooting Defendant

NLP

kinds of knowledge needed
Kinds of knowledge needed?
  • Consider the following interaction with HAL the computer from 2001: A Space Odyssey
  • Dave: Open the pod bay doors, Hal.
  • HAL: I’m sorry Dave, I’m afraid I can’t do that.
knowledge needed to build hal
Knowledge needed to build HAL?
  • Speech recognition and synthesis
    • Dictionaries (how words are pronounced)
    • Phonetics (how to recognize/produce each sound of English)
  • Natural language understanding
    • Knowledge of the English words involved
      • What they mean
      • How they combine (what is a `pod bay door’?)
    • Knowledge of syntactic structure
      • I’m I do, Sorry that afraid Dave I’m can’t
what s needed
What’s needed?
  • Dialog and pragmatic knowledge
    • “open the door” is a REQUEST (as opposed to a STATEMENT or information-question)
    • It is polite to respond, even if you’re planning to kill someone.
    • It is polite to pretend to want to be cooperative (I’m afraid I can’t…)
    • What is `that’ in `I can’t do that’?
  • Even a system to book airline flights needs much of this kind of knowledge
eliza weizenbaum 1966
Eliza: Weizenbaum (1966)
  • User: You are like my father in some ways.
  • ELIZA: What resemblance do you see
  • User: You are not very aggressive but I think you don’t want me to notice that.
  • ELIZA: What makes you think I am not aggressive
  • User: You don’t argue with me
  • ELIZA: Why do you think I don’t argue with you
  • User: You are afraid of me
  • ELIZA: Does it please you to believe I am afraid of you
modern conversational agents
Modern conversational agents
  • Switchboard Receptionists
    • Implications: need to know how a native or non-native speaker of English is likely to pronounce a random American name. Eek.
  • Airline and other simple dialogue systems
    • Lots of fabulously fun pragmatic issues
      • Grounding
      • Error handling
  • In general
    • Now that there are commercial installations
    • Big incentive to use linguistic or any other kind of knowledge if it actually improves performance
well understood semantic tasks
Well-understood Semantic Tasks
  • Named-entity Recognition
  • Coreference Resolution
  • Semantic Role Labeling
  • Sentiment Classification
entities
Entities

Named Entity Tagging: Identify all the proper names in a text

Sally went to see Up in the Air at the local theater.

Coreference Resolution: Identify all references (aka ‘mentions’) of people, places and things in text, and determine which mentions are ‘co-referential’.

John stuck hisfoot in hismouth.

semantic role labeling
Semantic Role Labeling

Semantic role labeling is computational task of assigning semantic roles to phrases

  • B-A0RELB-A1 I-A1B-AM I-AM I-AM
  • John broke the window with a hammer.
sentiment classification
Sentiment Classification

Given a review (about a movie, hotel, Amazon product, etc.), a sentiment classification system tries to determine what opinions are expressed in the review.

Coarse-level objective: is the review positive, negative, or neutral overall?

Fine-grained objective: what are the positive aspects (according to the reviewer), and what are the negative aspects?