390 likes | 411 Views
Learn about properties like Additive Identity, Multiplicative Identity, and more. Understand the properties using examples and step-by-step explanations.
E N D
Vocabulary • Additive Identity
Vocabulary • Additive Identity a + 0 = a • 0 is the additive identity • Multiplicative Identity
Vocabulary • Additive Identity a + 0 = a • Multiplicative Identity b · 1 = b • 1 is the multiplicative identity • - Multiplicative Property of Zero
Vocabulary • Additive Identity a + 0 = a • Multiplicative Identity b · 1 = b • Multiplicative Property of Zero c· 0 = 0 • Multiplicative Inverses
Vocabulary • Additive Identity a + 0 = a • Multiplicative Identity b · 1 = b • Multiplicative Property of Zero c· 0 = 0 • Multiplicative Inverses ¼ · 4 = 1 • “Reciprocal”
Vocabulary • Reflexive Property of Equality
Vocabulary • Reflexive Property of Equality a = a
Vocabulary • Reflexive Property of Equality a = a 2 + 3 = 2 + 3 • Symmetric Property of Equality
Vocabulary • Reflexive Property of Equality a = a 2 + 3 = 2 + 3 • Symmetric Property of Equality If a = b, then b = a.
Vocabulary • Reflexive Property of Equality a = a 2 + 3 = 2 + 3 • Symmetric Property of Equality If a = b, then b = a. If 3 + 6 = 9, then 9 = 3 + 6.
Vocabulary • Transitive Property of Equality
Vocabulary • Transitive Property of Equality If a = b and b = c, then a = c.
Vocabulary • Transitive Property of Equality If a = b and b = c, then a = c. If 5 + 7 = 12 and 12 = 8 + 4, then 5 + 7 = 8 + 4. • Substitution Property of Equality
Vocabulary • Transitive Property of Equality If a = b and b = c, then a = c. If 5 + 7 = 12 and 12 = 8 + 4, then 5 + 7 = 8 + 4. • Substitution Property of Equality If a = b, then a may be replaced by b.
Vocabulary • Transitive Property of Equality If a = b and b = c, then a = c. If 5 + 7 = 12 and 12 = 8 + 4, then 5 + 7 = 8 + 4. • Substitution Property of Equality If a = b, then a may be replaced by b.If n = 15, then 3n = 3 · 15.
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0 n = 0
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0 n = 0Multiplicative Property of Zero b)
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0 n = 0Multiplicative Property of Zero b) n = 5
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0 n = 0Multiplicative Property of Zero b) n = 5 Multiplicative Inverse Property
Example 2 Evaluate: ¼(12 - 8) + 3(15 5 - 2) Name the property used in each step.
Example 2 ¼(12 - 8) + 3(15 5 – 2)
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) Substitution
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) Substitution
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) Substitution Substitution
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) Substitution Substitution
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) Substitution Substitution Substitution
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) Substitution Substitution Substitution
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) Substitution Substitution Substitution Multiplicative Inverse
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) Substitution Substitution Substitution Multiplicative Inverse
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) 1 + 3 Substitution Substitution Substitution Multiplicative Inverse Multiplicative Identity
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) 1 + 3 Substitution Substitution Substitution Multiplicative Inverse Multiplicative Identity
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) 1 + 3 4 Substitution Substitution Substitution Multiplicative Inverse Multiplicative Identity Substitution
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) 1 + 3 4 Substitution Substitution Substitution Multiplicative Inverse Multiplicative Identity Substitution
Try on your own! Include the property with each step 2 ( 3 2 – 5 ) + 3 ⅓
Assignment Pgs. 23-25 12-28 (evens) 39 – 43 (all)