1 / 22

Development of slowed down beams at GSI

Test setup for slowed down beams at FRS. Development of slowed down beams at GSI. P.Boutachkov GSI. Physics objectives Proposed solution Test experiments Future. INTAG 2008. Project objective. RIB with sufficient luminosity for slow down experiments at S-FRS.

iria
Download Presentation

Development of slowed down beams at GSI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Test setup for slowed down beams at FRS Development of slowed down beams at GSI P.BoutachkovGSI Physics objectives Proposed solution Test experiments Future INTAG 2008

  2. Project objective RIB with sufficient luminosity for slow down experiments at S-FRS • Obtain 5 MeV/u to 10 MeV/u RIB to be used for secondary reaction studies at FRS / Super FRS INTAG 2008

  3. Development of slowed down beams around the world Fusion enhancement with neutron-rich RIB,32,38S+181Ta, slowed from 9 MeV/u to ~ 4 MeV/uK.E. Zyromski, et al. PRC 55, R562 (1997) High-spin states in 48Ca, using 5 MeV/u 46Ar beam slowed from 30 MeV/u to 5 MeV/uE. Ideguchi, et al. EPJA 25, 429 (2005) INTAG 2008

  4. Slowed down beams project and FRS 107pps 3x106pps 109pps 106 pps Tracking 62Co 64Ni 62Co D1 D2 D3 D4 250MeV/u 700MeV/u 5MeV/u TA1 S2 S4 Deg. TA2 Track the trajectory of each particle before slowing down Track the trajectory of each particle after slowing down Identify the energy of each particle before the secondary target INTAG 2008

  5. Degrader b, X,Y b, dE, E, X,Y ~ 5 MeV/u Fragments ~ 250 MeV/u Thin target 12Be Event-by-event tracking E [MeV/u] TOF[ns] Simple binary reactions performed with white beam • Energy straggling • Angular straggling • Contaminants from reactions into the degrader INTAG 2008

  6. 10Be(T=2)‏ n 9Be(3/2-,T=3/2)+n p 9Li(T=3/2)+p 1.57MeV Eg = 14.4 MeV 9Be(T=1/2)+n 13B(T=5/2)‏ p n 12Be(T=2)+p 12B(0+,T=2)+n Eg= 12.8 MeV 10Li: D.R. Tilley et al. NPA 745 (2004) 155 13Be: H. Simon et al. NPA 791 (2007) 267 and Ref. in the papers 12Be(T=1)+n Study IAS of 10Li in 10Be and 13Be in 13B INTAG 2008

  7. Radioactive Ion Beams(RIBs) and the Thick Target Technique K. P. Artemov, et at., Sov. J. Nucl. Phys., 52 (1990). Eb(d)‏ p p-RIB RIB+p Yield Ep(Eb)‏ p Ep(Er)‏ Eb - Eb Eb=Er Ep(Er)‏ p Eb + Eb Eb=Er Yield Ep(Eb)‏ Ep(Eb(d))‏ MSU, Apr 2008

  8. 12Be RIB+p Fragments Degrader ~ 250 MeV/u E [MeV/u] E(Eb)‏ D5 dE, E, X,Y TOF[ns] Yield Thin/thick target Simple binary reactions performed with white beam DE/E =1%DT=150 ps, for L=1 m INTAG 2008

  9. Contaminants from reactions into the degrader 80% of the 62Co nuclei “survived” the slow down The contaminants from secondary reactions are of the order of 10-3 compared to the fragment of interest INTAG 2008

  10. Angle after slowing down [mrad] Angular straggling 10 Mev/u FWHM(10 MeV/u) ~ FWHM(5 MeV/u) ~ 20 mrad Counts 20 mrad at a distance of 1.5 m  3 cm INTAG 2008

  11. Estimated upper limit for the Doppler shift due to energy+angular straggling E=10 MeV/u L=1.5 m • Scintillator, 100 micron • dE/ E= 0.02 • Diamond, 40 micron, no energy loss information dE/ E= 0.05 • Si, 40 micron, 100ps time resolution, energy loss added back • dE/ E= 0.017 (1% energy resolution) • Secondary Electron Detectors, 150 ps time resolution dE/ E= 0.0075 INTAG 2008

  12. Test experiment at FRS Al Degrader Si(300 mm) SC42(100micron)‏ vacuum 2.7m flight in vacuum 62Co 250 MeV/u 10 MeV/u 14 MeV/u SC41 Objectives: Investigate the concept with a simple setup Compare simulations to experimental results INTAG 2008

  13. 62Co TOF gate +/- 200 ps  E=620 +/- 9 MeVN(62Co into the gate)/N(62Co before the degrader) ~ 10-2 3000 in: 5x5 cm2 2500 2000 ESi [0.5 MeV/ch] 1500 1000 500 0 600 800 1000 1200 1400 1600 2000 1800 TOF(SC41-SC42) [1/40 ns/ch] INTAG 2008

  14. 64Ni, E(Si) gated on TOF for 10 MeV/u 30 Experiment: E(FWHM) ~ 86 MeV Beam size before and after slow-downDX(after)/DX(before) = 2.0+/-0.3 25 20 Counts Simulation: E(FWHM) ~ 17 MeVDX(after)/DX(before) = 1.7 15 10 5 1000 1500 2000 3000 3500 4000 500 0 2500 ESi [0.5 MeV/ch] EURORIB 2008

  15. 64Ni 14 MeV/u 64Ni E1 = 10.1 MeV/u,E1(FWHM) = 4 MeV 64Ni 14 MeV/u 64Ni E2 = 10.95 MeV/u,E2(FWHM) = 3.8 MeV Discrepancy in E(FWHM) SC42(100 mm)‏ SC42(80 mm)‏ (E2-E1) x 64 = 51 MeV INTAG 2008

  16. MCP Electronics: Phillips 715 CFD: walk +/- 75 ps CAEN V1290A TDC, Resolution 25 ps 4 x 6 cm, 1.5 mm Mylar foil DT(FWHM) ~ 140 ps DXa(FWHM) ~ 3 mm DXfr(FWHM) ~ 1.5 mm ea~ 85 % efr~ 100% DX(FWHM) ~ 1 mm INTAG 2008

  17. Si fast timing Coulomb scattering of 48Ca beam, 12.6 MeV/u at 20o Estimated time resolution DT(FWHM) ~ 100 ps DSSD: 40 mm 5x5 cm2 16x16 strips INTAG 2008

  18. Coulomb excitation 64Ni, 62Co Sep-Oct 2008. 107pps 3x106pps 109pps 106 pps Tracking 62Co 64Ni 62Co D1 D2 D3 D4 250MeV/u 700MeV/u 5MeV/u TA1 S2 S4 Deg. TA2 Track the trajectory of each particle before slowing down INTAG 2008

  19. spatial resolution:x-direction: ~ 0.1 mmy-direction: ~ 0.05 mm Tested up to 300kHz with Xe beam(500MeV/u)‏ efficiency > 98% up to ~104 Hz TPC efficiency & resolution drift space = active volume (20cm x 6,8,10 cm)gas: P10 at atm. pressure delay line read-out2 x-position measurements4 y-position measurements Used for high-resolution momentum measurements (~ 1.5 ·10-4) in knockout reactions at the FRS C. Nociforo, A. Prochazka (GSI)‏ INTAG 2008

  20. g - detector E MCP2 MCP1 5 MeV/u Au- Target DE - E g - detector Coulomb excitation 64Ni, 62Co Sep-Oct 2008. Collimator INTAG 2008

  21. Conclusions Slowed down beam experiment can be performed at FRS / S-FRS The simulations are consistent with the data from the test experiment with 62Co Fast pre-amplifiers for Si DSSD and MCP detector were built for the future slowed down setup INTAG 2008

  22. Collaboration P.Boutachkov1, M.Górska1, J.Gerl1, H.Geissel1, I.Kojouharov1, W.Koenig1, C.Nociforo1, W.Prokopowicz1, H.Schaffner1, H.Weick1, N.Kondratiev2, J.Jolie3, F.Naqvi3, J.J.Valiente4, A.Gadea4, M.Alvarez5, I.Muha5 and the HISPEC/DESPEC collaboration 1.GSI, 2.JINR Dubna, 3. Köln , 4. LNL Italy, 5. Sevilla INTAGEXID INTAG 2008

More Related