Create Presentation
Download Presentation

Download Presentation

The Fundamentals: Algorithms, Integers, and Matrices

Download Presentation
## The Fundamentals: Algorithms, Integers, and Matrices

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**The Fundamentals: Algorithms, Integers, and Matrices**CSC-2259 Discrete Structures Konstantin Busch - LSU**The Growth of Functions**Big-Oh: is no larger order than Big-Omega: is no smaller order than Big-Theta: is of same order as Konstantin Busch - LSU**Big-Oh:**(Notation abuse: ) There are constants (called witnesses) such that for all : Konstantin Busch - LSU**For :**Witnesses: Konstantin Busch - LSU**For :**Witnesses: Konstantin Busch - LSU**and**and are of the same order Example: and are of the same order Konstantin Busch - LSU**and**Example: Konstantin Busch - LSU**Suppose**Then for all : Impossible for Konstantin Busch - LSU**Theorem:**If then Proof: for Witnesses: End of Proof Konstantin Busch - LSU**Witnesses:**Konstantin Busch - LSU**Witnesses:**Konstantin Busch - LSU**Witnesses:**Konstantin Busch - LSU**Witnesses:**Konstantin Busch - LSU**For :**Witnesses: Konstantin Busch - LSU**Witnesses:**Konstantin Busch - LSU**constant**For : Witnesses: Konstantin Busch - LSU**Interesting functions**Higher growth Konstantin Busch - LSU**Theorem:**If , then Proof: Witnesses: End of Proof Konstantin Busch - LSU**Corollary:**If , then Theorem: If , then Konstantin Busch - LSU**Multiplication**Addition Konstantin Busch - LSU**Big-Omega:**(Notation abuse: ) There are constants (called witnesses) such that for all : Konstantin Busch - LSU**Witnesses:**Konstantin Busch - LSU**Same order**Big-Theta: (Notation abuse: ) Alternative definition: Konstantin Busch - LSU**Witnesses:**Witnesses: Konstantin Busch - LSU**Theorem:**If then Proof: We have shown: We only need to show Take and examine two cases Case 1: Case 2: Konstantin Busch - LSU**Case 1:**For and Case 2 is similar End of Proof Konstantin Busch - LSU**Complexity of Algorithms**Time complexity Number of operations performed Space complexity Size of memory used Konstantin Busch - LSU**Linear search algorithm**Linear-Search( ) { while( ) if ( ) return else return } //item found //item not found Konstantin Busch - LSU**Time complexity**Comparisons Item not found in list: Item found in position : Worst case performance: Konstantin Busch - LSU**Binary search algorithm**Binary-Search( ) { while( ) { if ( ) else } if ( ) return else return } //left endpoint of search area //right endpoint of search area //item is in right half //item is in left half //item found //item not found Konstantin Busch - LSU**Search 19**1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22 12 13 15 16 18 19 20 22 18 19 20 22 18 19 Konstantin Busch - LSU**Time complexity**Size of search list at iteration 1: Size of search list at iteration 2: Size of search list at iteration : Konstantin Busch - LSU**Size of search list at iteration :**Smallest list size: in last iteration : Konstantin Busch - LSU**Total comparisons:**Last comparison #iterations Comparisons per iteration Konstantin Busch - LSU**Bubble sort algorithm**Bubble-Sort( ) { for ( to ) { for ( to ) if ( ) swap } Konstantin Busch - LSU**First iteration**2 3 4 1 5 2 3 4 5 1 2 3 5 4 1 2 5 3 4 1 5 2 3 4 1 Second iteration Last iteration 5 2 3 4 1 5 2 3 4 1 5 2 4 3 1 5 4 2 3 1 5 4 3 2 1 Konstantin Busch - LSU**Time complexity**Comparisons in iteration 1: Comparisons in iteration 2: Comparisons in iteration : Total: Konstantin Busch - LSU**Tractable problems**Class : Problems with algorithms whose time complexity is polynomial Examples: Search, Sorting, Shortest path Konstantin Busch - LSU**Intractable problems**Class : Solution can be verified in polynomial time but no polynomial time algorithm is known Examples: Satisfiability, TSP, Vertex coloring Important computer science question Konstantin Busch - LSU**Unsolvable problems**There exist unsolvable problems which do not have any algorithm Example: Halting problem in Turing Machines Konstantin Busch - LSU**Integers and Algorithms**Base expansion of integer : Integers: Example: Konstantin Busch - LSU**Binary expansion**Digits: Konstantin Busch - LSU**Hexadecimal expansion**Digits: Konstantin Busch - LSU**Octal expansion**Digits: Konstantin Busch - LSU**Conversion between binary and hexadecimal**half byte Conversion between binary and octal Konstantin Busch - LSU**Base expansion( ) {**While ( ) { } return } Konstantin Busch - LSU**Binary expansion of**Konstantin Busch - LSU**Octal expansion of**Konstantin Busch - LSU**Binary_addition( ) {**for to { } return } //carry bit //auxilliary //j sum bit //carry bit //last sum bit Konstantin Busch - LSU**Carry bit: 1 1 1**Time complexity of binary addition: (counting bit additions) Konstantin Busch - LSU