1 / 17

Interferometr Fabry-perot

Interferometr Fabry-perot. Politechnika Śląska Instytut Fizyki Fizyka Techniczna, sem . VI Rok akademicki 2010/2011. sekcja 3. Ewa Kopeć Magdalena Kowol Wiktor Matysiak. Plan prezentacji. Wstęp teoretyczny Instrukcja do ćwiczenia Opracowanie wyników Podsumowanie Źródła grafik

ilario
Download Presentation

Interferometr Fabry-perot

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Interferometr Fabry-perot Politechnika Śląska Instytut Fizyki Fizyka Techniczna, sem. VI Rok akademicki 2010/2011 sekcja 3. Ewa Kopeć Magdalena Kowol Wiktor Matysiak

  2. Plan prezentacji Wstęp teoretyczny Instrukcja do ćwiczenia Opracowanie wyników Podsumowanie Źródła grafik Literatura

  3. LASER HELOWO NEONOWY to gazowy, atomowy generator światła, w którym ośrodkiem aktywnym jest mieszanina gazów szlachetnych: helu (1 Tor) i neonu (0.1 Tor), szczelnie zamkniętych w szklanej lub kwarcowej rurze wyładowczej, na której końcach znajdują się zwierciadła płaskie w tym jedno półprzepuszczalne, tworzące układ rezonatora optycznego. WSTĘP TEORETYCZNY Odległość między zwierciadłami równa jest wielokrotności połowy długości wzmacnianej fali światła λ/2 (warunek powstania fali stojącej). Układem pompującym są elektrody zatopione w szklanej rurze.

  4. Ponieważ atomy helu mają mniej elektronów łatwiej jest je wzbudzić (stąd tak wysoka zawartość helu w mieszaninie). Wzbudzany atom helu przechodzi ze stanu podstawowego do stanu metastabilnego, czyli takiego, który pozostaje długo wzbudzony. Na skutek zderzeń atomy helu przekazują energię atomom neonu. Atom helu powraca do stanu podstawowego, a atom neonu wzbudzany jest odpowiednio do stanu z poziomu 3s lub 2s. Przejście do tego stanu jest spowodowane niewielką różnicą tych poziomów energetycznych atomów helu i neonu. Intensywne wzbudzanie atomów neonu prowadzi do inwersji, w której wzbudzonych atomów neonu więcej niż atomów w stanie podstawowym. Z poziomu 3s dozwolone jest przejście promieniste do poziomu 3p i 2p. Przejściu do poziomu 2p towarzyszy emisja czerwonego światła (długości fali 632,82 nm), i to przejście jest wykorzystywane w typowym laserze HeNe. WSTĘP TEORETYCZNY

  5. Interferometr Fábry – Perot - czyli kluczowy element naszego stanowiska. Używany najczęściej przy spektrometrii wysokich rozdzielczości. Powstające prążki są ostrzejsze, cieńsze i lepiej rozseparowane niż te uzyskane np. za pomocą interferometru Michelsona. Najważniejsza częścią tego interferometru są dwa, częściowo przepuszczalne zwierciadła ustawione do siebie równolegle. Wiązka światła może albo przejść przez zwierciadła, albo ulec na ich powierzchniach wielokrotnym odbiciom. WSTĘP TEORETYCZNY

  6. W stosowanym przez nas module możemy zmieniać pozycję drugiego zwierciadła poprzez, co umożliwia obserwację prążków przy zmianie odległości między zwierciadłami. WSTĘP TEORETYCZNY Wszystkie te wiązki interferują ze sobą. Warunkiem otrzymania maksymalnego natężenia światła opuszczającego interferometr jest zgodność w fazie wszystkich wiązek. Oznacza to, że różnica dróg optycznych pomiędzy kolejnymi wiązkami powinna być równa całkowitej wielokrotności długości fali.

  7. WSTĘP TEORETYCZNY Interferencja – jest zjawiskiem nakładania się dwóch lub więcej fal. Ponieważ w naszym przypadku wykorzystujemy interferencję fal świetlnych, w niniejszym opisie skupimy się na interferencji fal elektromagnetycznych. Wiązka światła składa się z oscylujących pół elektrycznego i magnetycznego. Kiedy w przestrzeni spotykają się dwie lub więcej wiązki, pola dodają się zgodnie z zasadą superpozycji. Dla najprostszego przypadku dwóch fal harmonicznych o jednakowych amplitudach A, jednakowej długości fali λ i zgodnych fazach początkowych, rozchodzących się z dwóch różnych źródeł, które leżą w odległościach odpowiednio d1 i d2 od punktu P, zaburzenie w punkcie P opisuje wzór gdzie:

  8. Gdy spełniony jest warunek gdzie k – dowolna liczba naturalna (0, 1, 2…) to fale w punkcie p ulegają wzmocnieniu i Gdy w pewnym punkcie P1 fale się wygaszają Na grafice obok widzimy efekt interferencji dwóch fal kulistych w zależności od długości fali i odległości ekranu od źródła. WSTĘP TEORETYCZNY

  9. Fotorejestrator prążków interferencyjnych – jest to element skonstruowany przez jednego ze studentów w ramach pracy inżynierskiej. WSTĘP TEORETYCZNY Jego głównym elementem jest sensor CMOS firmy HAMAMATSU, model S9226. Posiada on 1024  piksele o wymiarach 7,8×135 μm. Resjestruje on promieniowanie o długości fali od 400 do 1000 nm, największą wrażliwość wykazuje dla promieniowania o długości 700 nm. Może pracować w szerokim zakresie temperatur: od -5°C do 60°C.

  10. Wszystkie elementy stanowiska umieszczone są na granitowej płycie, dzięki czemu ograniczamy drgania przenoszone przez otoczenie. Umożliwia to dokładniejszy pomiar. WSTĘP TEORETYCZNY

  11. Przygotowanie układu Uruchamiamy laser (potrzebuje ok. 15 minut aby się rozgrzać), następnie przecieramy szmatką nasączoną denaturatem wszystkie elementy optyczne. Justujemy układ tak, aby wiązka lasera padała dokładnie na środek soczewek i zwierciadeł, upewniając się, że wszystkie elementy układu są ustawione zgodnie z modułem Fabry-Perot. Sprawdzamy czy otrzymany obraz interferencyjny składa się z wyraźnych, koncentrycznych okręgów. Instrukcja do ćwiczenia Należy zwrócić szczególną uwagę na to, aby w czasie kiedy nie przeprowadzamy pomiarów okienko fotorejestratora było zasłonięte!

  12. Analiza obrazu interferencyjnego Umieszczamy biały ekran na tylnym uchwycie elementów wymiennych, następnie za pomocą śruby sterującej zwierciadłem ruchomym należy stopniowo zwiększać (lub zmniejszać) odległość między zwierciadłami. Zaobserwować na ekranie zmiany zachodzące w obrazie interferencyjnym. Zanotować zmiany oraz wyjaśnić, jaki jest ich sens fizyczny. Zmiana odległości między zwierciadłami, to inna droga pokonywana przez fale światła. Powoduje to, że dla innych fal zachodzi interferencja konstruktywna (spełniony jest warunek o wielokrotności połowy długości fali Instrukcja do ćwiczenia

  13. Wyznaczanie długości fali światła laserowego Zerujemy śrubę sterującą zwierciadłem ruchomym. Obracając pomału śrubę do przesuwania zwierciadła ruchomego zliczamy ile razy (m) układ prążków wrócił do stanu początkowego. Odczytujemy z ruchomej części śruby zmianę odległości między zwierciadłami (d), następnie obliczmy długość fali wiązki lasera (l) korzystając ze wzoru: Instrukcja do ćwiczenia Jedna podziałka na ruchomej części śruby odpowiada 0,4mm.

  14. Rejestracja natężenia prążków Uruchamiamy komputer, fotorejestrator (najpierw należy włożyć do kontaktu wtyczkę zasilacza, a następnie końcówkę zasilacza do gniazda fotorejestratora) i program sterujący pracą fotorejestratora. Stosując różne filtry rejestrujemy rozkład prążków interferencyjnych, sprawdzając który filtr jest najlepszy. Instrukcja do ćwiczenia

  15. Opracowanie wyników Najlepsze wyniki uzyskaliśmy dla filtra Hg546 z trzema filtrami neutralnymi

  16. Źródła grafik • http://pl.wikipedia.org/w/index.php?title=Plik:Wavepanel.png&filetimestamp=20060123224546 • ftp://ftp.pasco.com/Support/Documents/English/OS/OS-9255A/012-07137B.pdf • Źródła własne

  17. Literatura • ftp://ftp.pasco.com/Support/Documents/English/OS/OS-9255A/012-07137B.pdf • http://pl.wikipedia.org/wiki/Interferencja • http://wwwnt.if.pwr.wroc.pl/kwazar/mtk2/fizycy/126788/k4.htm • http://www.fizyka.umk.pl/~lab2/manual/13/

More Related