1 / 19

# Line Following - PowerPoint PPT Presentation

Line Following. Let’s review portions of Line Following Exercise. First we used “bang-bang” control to follow a line’s edge (right side and left side). Then we got both motors going by using hysteresis (transition overlap).

Related searches for Line Following

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Line Following' - hubert

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

• Let’s review portions of Line Following Exercise.

• First we used “bang-bang” control to follow a line’s edge (right side and left side).

• Then we got both motors going by using hysteresis (transition overlap).

• Let’s introduce proportional control by using the motor() function. motor (motor # ,percent full power); We might achieve smoother transitions.

Definitions

White = 25

Black = 125

port_motor = 1

starboard_motor = 3

Buggy

sensor = analog(3); /*read the sensor*/

If (sensor < 75) {

pmp = 100; /*set port motor power*/

smp = 0; } /*set starboard motor power*/

else {

pmp = 0; /*set port motor power*/

smp = 100; } /*set starboard motor power*/

motor (port_motor , pmp);

motor (starboard_motor, smp);

Definitions

White = 25

Black = 125

port_motor = 1

starboard_motor = 3

Buggy

sensor = analog(3); /*read the sensor*/

If (sensor < 75) {

pmp = 0; /*set port motor power*/

smp = 100; } /*set starboard motor power*/

else {

pmp = 100; /*set port motor power*/

smp = 0; } /*set starboard motor power*/

motor (port_motor , pmp);

motor (starboard_motor, smp);

Follow Left Edge of Line(Get both motors going with hysteresis)

Definitions

White = 25

Black = 125

port_motor = 1

starboard_motor = 3

Buggy

sensor = analog(3); /*read the sensor*/

If (sensor < 50) {

pmp = 100; /*set port motor power*/

smp = 0; } /*set starboard motor power*/

else if (sensor > 100) {

pmp = 0; /*set port motor power*/

smp = 100; } /*set starboard motor power*/

else {

pmp = 100;

smp = 100; }

motor (port_motor , pmp);

motor (starboard_motor, smp);

Follow Left Edge of Line(Use proportional control for smooth transitions)

Definitions

White = 25

Black = 125

port_motor = 1

starboard_motor = 3

Buggy

sensor = analog(3); /*read the sensor*/

pmp = 100 -1 * (sensor – 25);

smp = 1 * (sensor – 25);

motor (port_motor , pmp);

motor (starboard_motor, smp);

Follow Left Edge of Line(Get both motors going with hysteresis) (Use proportional control for smooth transitions)

Definitions

White = 25

Black = 125

port_motor = 1

starboard_motor = 3

Buggy

sensor = analog(3); /*read the sensor*/

If (sensor < 75) {

pmp = 100; /*set port motor power*/

smp = 2 * (sensor – 25); }

else {

pmp = 100 -2 * (sensor -75); smp = 100; } /*set starboard motor power*/

motor (port_motor , pmp);

motor (starboard_motor, smp);

Proportional Control(Careful algebra can avoid floats. Save the divide for last.)

Definitions

White = 25

Black = 100

port_motor = 1

starboard_motor = 3

Buggy

Inside parentheses executes first – save the divide for last

sensor = analog(3); /*read the sensor*/

pmp = (100 * (sensor – white)) / (black – white);

smp = 100 - pmp;

motor (port_motor , pmp);

motor (starboard_motor, smp);