Quantitative Methods

1 / 31

# Quantitative Methods - PowerPoint PPT Presentation

Quantitative Methods. Using more than one explanatory variable. Using more than one explanatory variable. Why use more than one?. Intervening or “3rd” variables ( schoolchildren’s maths ) Reducing error variation ( saplings ) There is more than one interesting predictor ( trees ) .

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Quantitative Methods' - hovan

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Quantitative Methods

Using more thanone explanatory variable

Using more than one explanatory variable

Why use more than one?

• Intervening or “3rd” variables (schoolchildren’s maths)
• Reducing error variation (saplings)
• There is more than one interesting predictor (trees)

Using more than one explanatory variable

Sequential and Adjusted Sums of Squares

Using more than one explanatory variable

Sequential and Adjusted Sums of Squares

2761.1

Using more than one explanatory variable

Sequential and Adjusted Sums of Squares

Using more than one explanatory variable

Sequential and Adjusted Sums of Squares

Using more than one explanatory variable

Why use more than one?

• Intervening or “3rd” variables (schoolchildren’s maths)
• Reducing error variation (saplings)
• There is more than one interesting predictor (trees)

Using more than one explanatory variable

Sequential and Adjusted Sums of Squares

Using more than one explanatory variable

Sequential and Adjusted Sums of Squares

Using more than one explanatory variable

Why use more than one?

• Intervening or “3rd” variables (schoolchildren’s maths)
• Reducing error variation (saplings)
• There is more than one interesting predictor (trees)

Using more than one explanatory variable

Sequential and Adjusted Sums of Squares

Using more than one explanatory variable

Sequential and Adjusted Sums of Squares

MTB > glm lvol=lhgt;

SUBC> covar lhgt.

LHGT 1 3.5042 3.5042 3.5042 21.14 0.000

Error 29 4.8080 4.8080 0.1658

Total 30 8.3122

MTB > glm lvol=lhgt+ldiam;

SUBC> covar lhgt ldiam.

LHGT 1 3.5042 0.1987 0.1987 30.14 0.000

LDIAM 1 4.6234 4.6234 4.6234 701.33 0.000

Error 28 0.1846 0.1846 0.0066

Total 30 8.3122

Using more than one explanatory variable

Models and parameters

Y =  + 

Unknown quantities we would like to know, in Greek

Known quantities that are estimates of them, in Latin

Using more than one explanatory variable

Models and parameters

Y =  + 

Using more than one explanatory variable

Models and parameters

MTB > glm lvol=ldiam+lhgt;

SUBC> covar ldiam lhgt.

Analysis of Variance for LVOL, using Adjusted SS for Tests

LDIAM 1 7.9289 4.6234 4.6234 701.33 0.000

LHGT 1 0.1987 0.1987 0.1987 30.14 0.000

Error 28 0.1846 0.1846 0.0066

Total 30 8.3122

Term Coef SE Coef T P

Constant -6.6467 0.7983 -8.33 0.000

LDIAM 1.98306 0.07488 26.48 0.000

LHGT 1.1203 0.2041 5.49 0.000

Using more than one explanatory variable

Models and parameters

MTB > glm lvol=ldiam+lhgt;

SUBC> covar ldiam lhgt.

Analysis of Variance for LVOL, using Adjusted SS for Tests

LDIAM 1 7.9289 4.6234 4.6234 701.33 0.000

LHGT 1 0.1987 0.1987 0.1987 30.14 0.000

Error 28 0.1846 0.1846 0.0066

Total 30 8.3122

Term Coef SE Coef T P

Constant -6.6467 0.7983 -8.33 0.000

LDIAM 1.98306 0.07488 26.48 0.000

LHGT 1.1203 0.2041 5.49 0.000

Fitted LVOL = -6.6467 + 1.98306*LDIAM + 1.1203*LHGT

Using more than one explanatory variable

Models and parameters

Model

Model Formula

lvol=ldiam+lhgt

Best Fit Equation

Fitted LVOL = -6.6467 + 1.98306*LDIAM + 1.1203*LHGT

Using more than one explanatory variable

Models and parameters

MTB > glm lvol=ldiam;

SUBC> covariate ldiam.

Analysis of Variance for LVOL

LDIAM 1 7.9254 7.9254 7.9254 599.72 0.000

Error 29 0.3832 0.3832 0.0132

Total 30 8.3087

Using more than one explanatory variable

Models and parameters

MTB > glm lvol=ldiam;

SUBC> covariate ldiam.

Analysis of Variance for LVOL

LDIAM 1 7.9254 7.9254 7.9254 599.72 0.000

Error 29 0.3832 0.3832 0.0132

Total 30 8.3087

Using more than one explanatory variable

Models and parameters

LDIAM 1 7.9254 7.9254 7.9254 599.72 0.000

Error 29 0.3832 0.3832 0.0132

Total 30 8.3087

LDIAM 1 7.9254 4.6275 4.6275 698.63 0.000

LHEIGHT 1 0.1978 0.1978 0.1978 29.86 0.000

Error 28 0.1855 0.1855 0.0066

Total 30 8.3087

Using more than one explanatory variable

Geometry in 3-D

LHGT 1 3.5042 0.1987 0.1987 30.14 0.000

LDIAM 1 4.6234 4.6234 4.6234 701.33 0.000

Error 28 0.1846 0.1846 0.0066

Total 30 8.3122

LDIAM 1 7.9289 4.6234 4.6234 701.33 0.000

LHGT 1 0.1987 0.1987 0.1987 30.14 0.000

Error 28 0.1846 0.1846 0.0066

Total 30 8.3122

Using more than one explanatory variable

Last words…

• Two or more x-variables are often useful and often necessary, and are easy to fit
• Two variables may duplicate or mask each others’ information
• Seq and Adj SS, plug-in parts, statistical elimination
• Model, model formula, and best fit equation

Next week: Designing experiments