1 / 37

バイオマスの石油化学原料化技術の開発

先端科学特別講義 , Nov.11, 2012. バイオマスの石油化学原料化技術の開発. 鹿児島大学 大学院理工学研究科. 化学生命・化学工学専攻. 筒井 俊雄. Biorefinery. 2. A set of technology to utilize biomass totally for producing fuels, chemicals and fertilizer. Petroleum refinery. Biorefinery. Fuel Transport oil Chemicals. Crude oil. Biomass.

Download Presentation

バイオマスの石油化学原料化技術の開発

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 先端科学特別講義, Nov.11, 2012 バイオマスの石油化学原料化技術の開発 鹿児島大学 大学院理工学研究科 化学生命・化学工学専攻 筒井 俊雄

  2. Biorefinery 2 A set of technology to utilize biomass totally for producing fuels, chemicals and fertilizer. Petroleum refinery Biorefinery Fuel Transport oil Chemicals Crude oil Biomass Non-edibles Fertilizer element Industry Agriculture Food Contributes to Prevention of Global Warming and Ensuring Energy & Resources Security Establishment of Self-sustained, Regional Society with Collaboration between Agriculture and Fuel & Chemical Industry

  3. From Viewpoint of Prevention of Global Warming Future Scenario (Shell) 6 Predicted Energy Demand in the world Geo/Ocean 1990 2012 Solar Wind Resources with CO2 Emission Renew-able Energy Nuclear Hydro Natural gas Level of CO2 Emission by Kyoto Protocol Petroleum Coal Biomass Combination of Renew-able Energy is necessary 20% is expected from Biomass

  4. 7 Highly Value- added Products The sole renewable resource which can be utilized for material and energy Biomass Plays a Special Role among Renewable Resources High Value Biomass Chemicals “Cascade” utilization 20% Wind, Hydro, Geo/Ocean Energy Technology of biomass conversion to chemicals is necessary 80% Solar Low Only for energy Demand

  5. Sugar Cane Field 3

  6. Bagasse 4

  7. Molasses 5

  8. Biomass Conversion Technologies BTL(ガス化+炭化水素合成) Biomass Gasification FT合成 Syn Gas Hydrocarbons Oxygen Steam 急速熱分解 Gas Hydrotreating Bio Oil Fast Pyrolysis Bio Oil Biomass (Crude) Cat. Reforming Char 新プロセス Biomass Products from Hemi-cellulose Hydrothermal treating Catalytic Reforming Aromatic Fuel Water Cellulose, Lignin

  9. Comparison with conventional process Biomass + H2O + O2 2H2 + CO CO2, H2O CnH2n+2 CH3COOH RCOOH CO, H2O Tar CO2, CH4, Char(Coke)

  10. Biorefinery 技術の開発に必要なこと ・バイオマス原料はプラントの近くに集積している必要がある ・製品に見合うバイオマス量を確保する必要がある  (燃料製造:製品100万トン/年以上、化学原料:10万トン/年以上) ・製品の品質は石油系の品質同等である必要 ・選択性とエネルギー効率の高いプロセスである必要がある

  11. Consideration of Scale for Biomass Conversion Process 天然ガス GTL Diesel Oil 生産量: 30,000b/d=2 million t/Y ガス化、 酸素分離、FT 合成など複雑・高価なプロセス Biomass BTL 1000万 t/YのBiomassに相当 困難(輸送コストが多大となる) 製糖工場 サトウキビ数100万 t/Yが集積している この規模に見合うプロセス=シンプルな技術の組合せ 既存のインフラの活用

  12. 4. 製糖工場とバイオリファイナリーのインテグレーション 製糖-Biorefinery Hybrid システム 従来の製糖工程

  13. New process integlated with a sugar factory Sugar factory Sugar cane Sugar (12) (100) Baggase Morasses Steam (25) (4) Bagasse Boiler After introducing the new process Sugar cane Sugar New Process Hot water Fuel Oil Morasses Ads. Oxygenates Catal. Re- forming Hydro-thermal Steam Baggase (25) (1.3) Hemi-Cellulose (6.2) → Baggase Boiler Other Biomass Residual Baggase (18)

  14. NEDO Project 1. Hydrothermal Treatment(AIST) 2. Catalytic Reforming(Kagoshima Univ.) 4. Process Design(Chiyoda Corp.) 3. K Recovery(Kagoshima Pref. Inst.)

  15. バガスの水熱処理(ヘミセルロース→水溶性分解物)バガスの水熱処理(ヘミセルロース→水溶性分解物) 水中 温度200℃、圧力18気圧程度 バガス

  16. 水熱処理によって生成する物質 HC=O HC=O HCOH H2COH H2COH H2COH C=O H2COH O CHO C C CH HC HOCH2 O CHO C C CH HC バガス Glyceraldehyde Glycol-aldehyde Dihydroxy-acetone 廃糖蜜 酢酸 CH3COOH フルフラール レブリン酸 5-ヒドロキシメチル フルフラール CH3COCH2CH2COOH

  17. Pretreatment Aldehydes 200 180 160 17.4 140 30.7 24.0 120 0.0 0.0 100 87.9 40.7 56.0 80 60 38.2 40 43.6 47.2 20 33.7 3.2 14.6 3.3 2.7 0 0.01M HCl 0.23M HCl 0.23M H2SO4 10 Hydrothermal Treatment of Bagasse AIST and Kagoshima Univ. Hemi-Cellulose=25wt% Acid Water Hemicellulose was converted at 200℃. Yield was increased and levulinic acid was obtained by acid addition at higher temp.

  18. Pretreatment 11 Hydrothermal Treatment of Molasses Kagoshima Univ. 250℃, HCl=0.1mol/L Levulinic A. Aldehydes 5-HMF Yield was 67 C% of sugars included in molasses

  19. Pretreatment 12 Acid Fermentation of Molasses Kagoshima Univ. CO2 Yield [ C % ] Butyric Acid Acetic Acid Lactic Acid Day Organic acid yield was 47 C% of sugars included in molasses

  20. 15 接触改質反応装置 Oxygen-containing Intermediates

  21. ゼオライト触媒による接触改質 16 ZSM-5(Si/Al=27), 723K

  22. Yields of aromatic products in the conversion of various oxygen-containing intermediates with ZSM-5 (Si/Al=27) 723K 17

  23. Effect of zeolite species on the product yields in the conversion of furfural at 823K 20 Furfural

  24. Effect of reaction temperature on the product 19 Levulinic acid, ZSM-5(Si/Al=27)

  25. 13 Intermediates for Catalytic Reforming Bagasse Glyceraldehyde Hemi-cellulose Cellulose Hydrothermal Reaction Dihydroxyacetone Retro-aldol Hydrolysis Glycolaldehyde Dehydration Levulinic acid 5-Hydroxymethyl fulfural (5-HMF) Saccharides Furfural Acid fermentation Molasses Acetic acid Lactic acid Butyric acid

  26. Gradient composition zeolite Gradient composition ZSM-5: Minimizing coking at external surface of zeolite Suppressing coke/tar formation Reforming Products Acid sites in the pore TEM-EDX 回折像 TEM

  27. Minimizing Energy Consumption Conventional Technology with Distillation New Process Zeolite Tsutsui:Japanese Patent Publication 2010-202548 Catal. Reformer Water Hot water Hydro-thermal Reactor Adsorp-tion Bagasse Distillation Bagasse Heat Water 200℃ 1.8MPa Water Reforming Oxygenate Solution (2wt%) Oxygenate Oxygenate Resid. bagasse Resid. bagasse Bagasse=1kg,Water=10kg, Oxygenate=0.2kg Oxygenate Concentration= 40wt% Oxygenate Concentration=2wt% Required heat for water evaporation: 15MJ/kg-bagasse 5~2MJ/kg-bagasse Energy consumption can be reduced drastically

  28. Adsorption isotherm of an oxygenate with zeolite Adsorption of Oxygenates with Zeolite Pore volume [mL/g] Water Adsorption isotherm Adsorbed quantity [g/g-zeolite pellet] Oxygenate (Levulinic acid) Concentration in the zeolite pores =40 wt% Concentration in liquid phase [mol/L] Concentration in the liquid phase= 2 wt%

  29. 1. バイオリファイナリーの意義 1.温暖化対策、資源エネルギーセキュリティの確保 2.農業振興、地域自立社会構築 持続可能な社会 バイオマスの利用はこの両方に貢献するもの 製糖工場に集積するサトウキビ由来のバイオマス(廃糖蜜・バガス)の活用について検討

  30. Biorefineryによる地域貢献 サトウキビの製糖工程で副生する バガスや廃糖蜜 を高効率に炭化水素類に転化する 新規バイオリファイナリー技術 を適用することにより、 農業廃棄物から 地域のエネルギー や高付加価値化学原料 を生産するとともに、有用肥料成分である カリウム の回収を行う 地域循環モデルを構築 する。 Biorefinery これまでは石油・肥料を購入し、廃糖蜜を搬出 × バガス・廃糖蜜 製糖工場 サトウキビ × エネルギー 化学原料 燃料油 カリウム 地域資源循環・高付加価値化

  31. Biorefineryを基盤とする社会 CO2排出量低減 石油使用量低減 日本全体 農作物(食糧) 収入 補助金 化学品 農業副生物 廃棄物 地域産業振興 収入 Biorefinery 休耕地 肥料 農業経営拡大 地域燃料 増産 農地開拓・整備 農業収益性向上 食糧自給率向上

  32. 世界のバイオマス活用・CO2削減への貢献 3.1 1140 2410 9.8 3590 7570万

More Related