1 / 10

BTeV

BTeV. The final aim of BTeV experiment is to search for New Physics in the Heavy Flavor sector, b and c We could either discover it or contribute to individuate the New Model generating it, if discovered elsewhere (LHC) Each New Model impacts the HF measurements with different patterns

hija
Download Presentation

BTeV

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BTeV • The final aim of BTeV experiment is to search for New Physics in the Heavy Flavor sector, b and c • We could either discover it or contribute to individuate the New Model generating it, if discovered elsewhere (LHC) • Each New Model impacts the HF measurements with different patterns • and these could be the only way to distinguish among them • To succeed in this, BTeV exploits the huge potential of the Tevatron collider in terms of produced b •  41011 b-hadrons per 107s at L = 21032 cm-2s-1 • All the b-hadron species are produced: B, Bs, Bc, b, … BTeV forever

  2. Belarussian State-D .Drobychev, A. Lobko, A. Lopatrik, R. Zouversky UC Davis - P. Yager Univ. of Colorado at Boulder J. Cumalat, P. Rankin, K. Stenson Fermi National Lab J. Appel, E. Barsotti, C. Brown, J. Butler, H. Cheung, D. Christian, S. Cihangir, M. Fischler, I. Gaines, P. Garbincius, L. Garren, E. Gottschalk, A. Hahn, G. Jackson, P. Kasper, P. Kasper, R. Kutschke, S. W. Kwan, P. Lebrun, P. McBride, J. Slaughter, M. Votava, M. Wang, J. Yarba Univ. of Florida at Gainesville P. Avery University of Houston – A. Daniel, K. Lau, M. Ispiryan, B. W. Mayes, V. Rodriguez, S. Subramania, G. Xu Illinois Institute of Technology R. Burnstein, D. Kaplan, L. Lederman, H. Rubin, C. White BTeV Collaboration University of MinnesotaJ. Hietala, Y. Kubota, B. Lang, R. Poling, A. Smith Nanjing Univ. (China)- T. Y. Chen, D. Gao, S. Du, M. Qi, B. P. Zhang, Z. Xi Xang, J. W. Zhao New Mexico State - V. Papavassiliou Northwestern Univ. - J. Rosen Ohio State University- K. Honscheid, & H. KaganUniv. of Pennsylvania W. Selove Univ. of Puerto Rico A. Lopez, H. Mendez, J. Ramierez, W. Xiong Univ. of Science & Tech. of China - G. Datao, L. Hao, Ge Jin, L. Tiankuan, T. Yang, & X. Q. YuShandong Univ. (China)- C. F. Feng, Yu Fu, Mao He, J. Y. Li, L. Xue, N. Zhang, & X. Y. Zhang Southern Methodist – T. Coan, M. Hosack Syracuse University- M. Artuso, C. Boulahouache, S. Blusk, J. Butt, O. Dorjkhaidav, J. Haynes, N. Menaa, R. Mountain, H. Muramatsu, R. Nandakumar, L. Redjimi, R. Sia, T. Skwarnicki, S. Stone, J. C. Wang, K. Zhang Univ. of Tennessee T. Handler, R. Mitchell Vanderbilt University W. Johns, P. Sheldon, E. Vaandering, & M. Webster University of Virginia M. Arenton, S. Conetti, B. Cox, A. Ledovskoy, H. Powell, M. Ronquest, D. Smith, B. Stephens, Z. Zhe Wayne State UniversityG. Bonvicini, D. Cinabro, A. Schreiner University of WisconsinM. Sheaff York University-S. Menary Univ. of Illinois- M. Haney, D. Kim, M. Selen, V. Simatis, J. Wiss Univ. of Insubria in Como- P. Ratcliffe, M. Rovere INFN - Frascati- M. Bertani,L. Benussi, S. Bianco, M. Caponero, D. Collona, F. Fabri, F. Di Falco, F. Felli, M. Giardoni, A. La Monaca, E. Pace, M. Pallota,A. Paolozzi , S. Tomassini INFN - Milano – G. Alimonti, P’Dangelo, M. Dinardo, L. Edera, S. Erba, D. Lunesu, S. Magni, D. Menasce,L. Moroni, D. Pedrini, S. Sala , L. Uplegger INFN - Pavia- G. Boca, G. Cossali,G. Liguori, F. Manfredi, M. Maghisoni, L. Ratti, V. Re, M. Santini, V. Speviali, P. Torre, G. Traversi IHEP Protvino, Russia - A. Derevschikov, Y. Goncharenko,V. Khodyrev, V. Kravtsov, A. Meschanin, V. Mochalov, D.  Morozov, L. Nogach, P. Semenov K. Shestermanov, L. Soloviev, A. Uzunian, A. Vasiliev University of Iowa C. Newsom, & R. Braunger

  3. q  = -ln(tan ) 2 b production angle b production angle b-physics in the forward region • BTeV covers the p-bar forward region , where the b production peaks • 1.9<<4.5 • The higher b momenta limit MCS effects & boost the b/b values • The strong b b-bar angular correlation makes the flavor tagging much easier BTeV forever

  4. p beam line Pixel detector inside magnet, allows for first level triggering, on detached vertices, since low pt tracks with large multiple scattering can be eliminated BTeV forever

  5. Pixel Vertex Detector 30 stations, 130cm 4.25 cm • Low occupancy • Excellent signal/noise • Fast readout • Excellent resolution (5-10 mm in 1999 FNAL test beam run) • radiation hard sensors and readout chips (demonstrated in exposures at IUCF) • Allows for Vertex Trigger at the lowest level BTeV forever

  6. State efficiency(%) state efficiency(%) B p+p- 55 Bo K+p- 54 Bs DsK 70 Bo J/y Ks 50 B- DoK- 60 Bs J/yK* 69 B- Ksp- 40 Bo K*g 40 b,b/sb BTeV L1 Vertex Trigger • Performs a real-time full reconstruction of tracks and vertices of each collision to look for secondary vertices • Trigger decision • based on the number of tracks having an impact parameter significance b/b > n • For a requirement of at least 2 tracks detached by more than 4s, we trigger on only 1% of the beam crossings and achieve the following efficiencies for these states at Level 1: BTeV forever

  7. Forward Tracker • Very solid and redundant system with Straws at large angles and Micro-strip in the inner region around the beam pipe • 7 stations with 3 views, X, U and V • Achieves a momentum resolution < 1% • Here is where the Italian construction effort is concentrated BTeV forever

  8. RICH: Two systems • Gas + Mirror + MAPMT to identify b decay products • Liquid + PMT’s to help with flavor tagging of b’s (p/K separation for p < 9 GeV/c) • Excellent particle id. distinguishes BTeV from “Central pp Detectors” BTeV forever

  9. PbWO4 EM Calorimeter • Use CMS development of crystal technology. Now used for CMS, ALICE, JLAB, etc… • Use Photomultiplier tubes instead of APD’s • Excellent performance in energy resolution • Together with the pixel vertex trigger, one of the unique feature of BTeV • Allows BTeV to make precision measurement of modes involving  and 0 BTeV forever

  10. Some of BTeV’s Physics Reach in 2 fb-1(CKM) Just because a mode isn’t listed, doesn’t mean we can’t do it!

More Related