1 / 41

Spectroscopy and New Resonances at Belle

Spectroscopy and New Resonances at Belle. B. Golob University of Ljubljana, Slovenia Belle Collaboration. Experimental environment X(3872) quant. numbers gg → Z(3930) - c c2 ’ Y(3940) X(3940) Summary. Tega verjetno ne, bom preveril z Galino.

hide
Download Presentation

Spectroscopy and New Resonances at Belle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spectroscopy and New Resonances at Belle B. Golob University of Ljubljana, Slovenia Belle Collaboration • Experimental environment • X(3872) quant. numbers • gg →Z(3930) -cc2’ • Y(3940) • X(3940) • Summary Tega verjetno ne, bom preveril z Galino B. Golob, Belle Lake Louise Winter Inst., 2006

  2. Experimental environment Mt. Tsukuba KEKB Belle u,d,s,c ~1 km in diameter > 1 fb-1/day (>1 M BB/day) Integrated luminosity ∫Ldt ~500 fb-1 on reson. 50 fb-1 off reson. ~550 M BB B Feb ‘06 May ‘99 KEKB asymmetric B factory Belle B e+ Υ(4s) e- u,d,s,c e+ g* e- 8 GeV e- 3.5 GeV e+ available data B. Golob, Belle Lake Louise Winter Inst., 2006

  3. Observed by Belle 275M BB,hep-ex/0505037 275M BB,hep-ex/0505038 X(3872) 152M BB,PRL91,262001(2003) B± → K± gJ/y B± → K± p+p-J/y B± → K± cc1(gJ/y) calibration mode, p0 veto world average: M=3871.9±0.5 MeV/c2 y’ X(3872) no. of B’s in bins ofM(gJ/y) 13.6±4.4 evts.(4s) M=3872 MeV/c2 s=13 MeV/c2 M(p+p-l+l-)-M(l+l-) Br(B→XK) Br(X→p+p-J/y) = (1.31±0.24±0.13)x10-5 charmonium, DD*, tetraquarks...? E.S.Swanson,PLB588,189(2004) L.Maiani et al.,PRD71,014028(2005) C(X(3872))=+1 B. Golob, Belle Lake Louise Winter Inst., 2006

  4. p+ X(3872) X(J/y, r) q l- l+ p- JPC=1++ p- X(J/y, r) q B K |cosq| p+ 275M BB,hep-ex/0505038 • X→gJ/y • ang. distrib. • M(p+p-) in X→p+p-J/y disfavor all of J=0,1,2 cc states except • 1++, 2++ • X→D0D0p0 ?? • 1++ →DD* S-wave • 2++ →DD* D-wave, • suppressed by • (q*)2L+1 angular distributions in B± → K± X(p+p-J/y) examples: expected JPC=0++ c2/nof=31/9 side band |cosq| c2/nof=5/9 X→ J/y r, S-wave B. Golob, Belle Lake Louise Winter Inst., 2006

  5. X(3872) N=12.5±3.9 (>5) B→KD0D0p0/KD0D*0 M(D0D0p0) in B signal region Uporabi hep-ex/0606055! preliminary Br(BK X)Br(XDD) =(1.6±0.4±0.3)10-4 M(D0D0p0) ≈ M(X) Br(XDD)/Br(X→p+p-J/y) =12±5 hard to accomodate with a 2++ state JPC(X(3872))=1++ B. Golob, Belle Lake Louise Winter Inst., 2006

  6. 395fb-1,hep-ex/0512035 acc. to PRL e+ g D D g e- • un-tagged • D0→Kp, Kpp0, K3p D+→Kpp • pt(DD)<0.05 GeV/c 64±18 evts M=3929±5±2 MeV/c2 G=29±10±2 MeV M(DD)[GeV/c2] D side band Z ≡ cc2’ 23P2 cc Z(3930) q*: D,beam axis in gg frame acceptance corrected J=2 expect. c2/nof=1.9/9 J=0 expect. c2/nof=23.4/9 D side band 5.3s S.Godfrey,N.Isgur,PRD32,189 (1985) C.R.Münz,Nucl.Phys.A609,364 (1996) B. Golob, Belle Lake Louise Winter Inst., 2006

  7. Y(3940) 275M BB, PRL94, 182002(2005) Dalitz plot for B→ KwJ/y M(Y)=3943±11±13 MeV G=87±22±26 MeV 58 ± 11 evts. >8s No. of B’s in bins of M(wJ/y) B± → K* J/y; K*→ K± w resonant structure? M2(J/yw) Br(B→YK) Br(Y→wJ/y)= (7.1±1.3±3.1) x10-5 M(J/yw) M2(Kw) radially excited P-wave cc? large Br(Y→wJ/y) cc-gluon hybrid? suppressed D(*)D(*) decays predicted M≥4.3 GeV F.E.Close,P.R.Page, Nucl.Phys.B443,233(1995) C.Banner et al., PRD56,7039(1997) B. Golob, Belle Lake Louise Winter Inst., 2006

  8. X(3940) 357fb-1,hep-ex/0507019 subm. to PRL X(3940)→D(*)D ? reconstruct J/y + one D constrain Mrec(J/y D)=M(D(*)) s(Mrec(J/y))~10 MeV/c2 X e- e+ J/y Reconstruct J/y →l+l- recoil mass (mass of X): Mrec(J/y D)=M(D) 266±63 evts M~3936 MeV/c2 s(Mrec)~ 30 MeV/c2 Mrec(J/y D)=M(D*) 24.5±6.9 evts 5s 5s M=3943±6±6 MeV/c2 G<52 MeV @90% C.L. B. Golob, Belle Lake Louise Winter Inst., 2006

  9. 357fb-1,hep-ex/0507019 subm. to PRL X(3940) inclusive/D*D tagged sample, common evts removed B>2(X→D*D) > 45% @90% C.L. B(X→D D) < 41% @90% C.L. B(X→J/y w) < 26% @90% C.L. no evidence for X(3940)→J/y w X(3940)≠Y(3940) several speculations on X(3940) nature, all pro’s and con’s; further experimental study (ang. distrib.) B. Golob, Belle Lake Louise Winter Inst., 2006

  10. Summary • KEKBis also a great source of charm & cc states • Some expected, manyunexpected/puzzling observations/discoveries cc2’ DsJ Sc(2800) Y(3940) X(3872) PQ broad D** X(3940) understanding range of questions: existence? all properties as expected? what are they? anomalous properties? B. Golob, Belle Lake Louise Winter Inst., 2006

  11. Experimental environment Mt. Tsukuba e- KEKB B Belle Υ(4s) ~1 km in diameter > 1 fb-1/day (>1 M BB/day) e+ Integrated luminosity ∫Ldt = 415 fb-1 on reson. 45 fb-1 off reson. ~450 M BB B Feb ‘06 May ‘99 KEKB asymmetric B factory Υ(4s) available data B. Golob, Belle Lake Louise Winter Inst., 2006

  12. Experimental environment Central Drift Chamber e+ 3.5 GeV s(pt)/pt= 0.3% √pt2+1 3(4) layer Si vtx det. e- 8 GeV combined particle ID e(K±)~85% e(p±→K±)<~10% @ p<3.5 GeV/c Aerogel Cherenkov Counter (n=1.015- 1.030) m and KL identification (14/15 lyrs RPC+Fe) 1.5T SC solenoid EM Calorimeter CsI (16X0) B. Golob, Belle Lake Louise Winter Inst., 2006

  13. B ECM/2 signal ECM/2 U(4s) e- e+ signal B B ∑ pi, ∑ Ei continuum Experimental environment Off reson. data: continuum only On reson. data: BB (spherical) separated from continuum (jet shaped) on basis of topological variables e.g. angle between B direction and beam axis B. Golob, Belle Lake Louise Winter Inst., 2006

  14. X(3872) backup

  15. X(3872) cc spectrum backup slide hc” cc1’ y2 y3 hc’ MD+MD* hc2 y” 2MD y’ hc’ cc2 G parities: hc”+1 cc1’+1 hc2+1 hc’-1 y2-1 y3 -1 p+p-J/y -1 G=(-1)L+S+I hc cc1 cc0 J/y hc

  16. Observed by Belle with 152M BB B± → K± p+p-J/y l+l- How about with 275M BB? 152M BB, PRL91,262001 (2003) 275M BB,hep-ex/0505038 X(3872) Calculate Mbc in 5 MeV bins ofM(p+p-J/y) M(p+p-l+l-)-M(l+l-) 3865 MeV no. of B’s inbins ofM(p+p-J/y) 3870 MeV 49.1±8.4 evts. Br(B→XK) Br(X→ p+p-J/y) = 3875 MeV (1.31±0.24±0.13) x10-5 M(p+p-l+l-) B. Golob, Belle Lake Louise Winter Inst., 2006

  17. X(3872) B± → K± gJ/y M=3872 MeV s=13 MeV (cc1) no. of B’s inbins ofM(gJ/y) 13.6-2.6=11.6 evts s=13 MeV no evidence, consistent significance: nbkg=2.6+0.6, nmax: best fit in X(3872) mass bin; PPoiss(nbkg>13) = 2.4x10-5 (>5s) B. Golob, Belle Lake Louise Winter Inst., 2006

  18. B± → K± p+p- p0 J/y Mbc andDE in 25 MeV bins of M(p+p-p0) X(3872) -0.1 0.1 5.20 5.25 5.30 Mbc DE M(p+p-p0J/y)= M(X)± 3s no. of B’s in bins ofM(p+p-p0) 13.1±4.2 evts.(6.4s) M(p+p-p0)>750 MeV consistent with 0 First observation of decay mode other than p+p-J/y; subthreshold decay to wJ/y (expected for DD* molecule) C(X(3872))=+1 B. Golob, Belle Lake Louise Winter Inst., 2006

  19. B± → K± p+p-p0 J/y X(3872) signal v iii iv ii i Side regions B± → K±wJ/y wband M(p+p-p0J/y) Xband fit Mbc and DE M(p+p-p0) DEin 25 MeV bins of M(p+p-p0) Possible contr.K±wJ/y0.75 ± 0.14

  20. B± → K± p+p-p0 J/y X(3872) backup slide B± → K1(1270)J/y 4.3±6.2 region I M(X)-M(3p) signal region region III 6.4±5.6 Simultaneous fit to DE and Mbc distrib. for M(p+p-p0)>750 MeV non-resonant, peaking bckg. 1.3±1.0 (scaled to sig. area) signific.: main syst. uncertainty: contrib. of peaking bckg. and K±wJ/y: -20%; M(3p)>750 MeV: +25% nbkg=2.1+1.0, nmax: best fit in X(3872) mass bin;

  21. X(3872) ccuu=1/√2 cc [1/√2 (uu+dd)+1/√2 (uu-dd)] =1/√2(|I=0>+|I=1>) backup slide M(pp) for B→XK, X→ppJ/y S-wave, c2/nof=43/39 X→J/y r (as indicated by m(pp)) P-wave, c2/nof=71/39 P=+1 S- or D-wave J/y r P=-1 P- or F-wave J/y r M(pp): centrifugal barrier suppression (q*J/y)2L+1 DE, Mbc side band I(r)=1, I(w)=0, I(J/y)=0 → X decays break isospin symmetry

  22. X(3872) JPC=0--:exotic, violates P, wrong C 0-+:ang. dist., M(pp), no gJ/y E1 trans. 0++:ang. dist., DD allowed 0+-:exotic, wrong C 1--:wrong C, ang. dist., DD allowed 1-+:exotic, M(pp), no gJ/y E1 trans., DD allowed 1++:- 1+-:wrong C, ang. dist. 2--:wrong C 2-+:M(pp), no gJ/y E1 trans., 2++:DD allowed but L=2 suppressed 2+-:wrong C, DD allowed 2++: cc2’ (=Z), M=3929 MeV/c2 1++: cc1’, M~3950-3990 MeV/c2 (potential models, ?) two orders lower than expected forcc1’ , cc2’

  23. X(3872) 447M BB B→KD0D0p0/KD0D*0 M(D0D0p0) in B signal region preliminary B meson yield in M(D0D0p0) signal region 24.1±6.1 evts 6.5s Br(BK X)Br(XDD)= (1.21±0.29±0.20)10-4 M(D0D0p0) =M(X) Br(XDD)/Br(X→p+p-J/y) =9.2±3.3 hard to accomodate by 2++ state JPC(X(3872))=1++ B. Golob, Belle Lake Louise Winter Inst., 2006

  24. X(3872) B→KD0D0p0/KD0D*0 M(D0D0p0) vs. DE B meson yields in bins of M(D0D0p0) • final signal yield from 2D • unbinned extended ML fit; • signal: double Gaussian in DE, • fixed parameters; • single Gaussian in M(D0D0p0), free • bkg: • non-resonant B→KD0D*0:double • Gauss in DE, threshold in M(D0D0p0) • - combinatorial: linear in DE, • threshold in M(D0D0p0),

  25. X(3872) B→KD0D0p0/KD0D*0 contribution of non-resonant B→KD0D*0 to M(D0D0p0) signal region: 1.6±0.2 evts (from large MC sample) mass of observed peak: M(D0D0p0)=3875.2±0.7 MeV/c2 small PS: D0p0 mass inB→KD0D0p0 also clustering at M(D*0) cross-checks: no peaking in B→KD0D-p0 B→KD0D0p0 D side band DE side band Br(B+K+ X)Br(XDD)= (1.07±0.31±0.19)10-4 Br(B0K0 X)Br(XDD)= (1.78±0.72±0.34)10-4

  26. E.S.Swanson,hep-ph/0601110 X(3872) • Tetraquarks? • X±: [cu][cd], [cd][cu] → not observed • X0: mixture [cu][cu], [cd][cd], dM ~ 8 MeV/c2 dM from B0 and B+ decays: ~2 MeV/c2 (BaBar, Beijing05) • equal production rate B0→K-X+, B0→K0Xd, B+→K+Xu, B+→K0X+, (discussion about that?), B0→XK0/B+→XK+ = 0.5 ± 0.3 • [cs][cs] partner, not seen in B→J/y f K, • DD* molecule? • JPC = 1++ • M(pp) r • comparable rJ/y, wJ/y • B0→XK0 / B+→XK+ ~ 0.06-0.29 • X→D0D0p0 / X→ p+p- J/y ~ 0.08

  27. cc2’ backup

  28. cc2’ 395fb-1,hep-ex/0512035 acc. to PRL pt(DD)[GeV/c] D0D0 MC gg→DD D(*)D* non-c bkg D+D- • Fit: signal BW (s=3 MeV/c2 included) • e dependence on M and gg lumin. func. included • bkg M-a Systematics: M, G: m(D), BW(J=0,2) Ggg: reconstr. eff., selection eff., D Br’s D side, D signal ≈ both D side B. Golob, Belle Lake Louise Winter Inst., 2006

  29. Y(3940) backup

  30. Y(3940) backup slide B→ KwJ/y DE in 40 MeV bins ofM(wJ/y) |DE| < 0.03 GeV, 5.2725< Mbc< 5.2875 GeV all fits consistent yield within stat. error (~200±20) B yield inM(wJ/y) bins for B→ KwJ/y phase space MC Yields determined from simultaneous DE and Mbc fits (constrained to be equal); peak position and width from fits to integrated distrib. Fit with f(M)=Aq*(M) q*(M): mom. of daughter part. in wJ/y frame

  31. Dalitz plot for B→ KwJ/y Y(3940) B→ Kp+p- p0 J/y B± → K* J/y; K*→ K± w Events in DE, Mbc signal region resonant structure? M2(J/yw) M(p+p-p0J/y) B→ KwJ/y M(p+p-p0) M2(Kw) For these B→ KwJ/y plot Mbc, DE in bins ofM(wJ/y) B. Golob, Belle Lake Louise Winter Inst., 2006

  32. Nw=74±14 Y(3940) backup slide B→ KwJ/y M(p+p-p0) DE, Mbc signal region 20% variation included in syst. error. Ks,K± yields consistent with acc. ratio. acceptance K± KS M(wJ/y) M(wJ/y)<3997 MeV (first 3 bins in M(wJ/y)); no resonance in Kw in this M(wJ/y) region M(Kw) DE, Mbc side band: Nw=14±10(non-w 3p) fraction of true w in signal: 0.90±0.18 (in syst. error)

  33. Y(3940) backup slide B→ KwJ/y Main syst. uncertainty: fit using S-wave BW or Lorentzian shape for resonance; linear or 3rd order polynomial for bckg.; largest deviation +38% possible non-w 3p contribution; -28% Significance: integral of fitted phase space in first 3 bins of M(wJ/y) 16.8±1.4 total number of events: 55.6 significance > 9s > 8s

  34. X(3940) backup

  35. 357fb-1,hep-ex/0507019 submm. to PRL X(3940) X e- e+ J/y backup slide Calculate recoil mass (mass of X): Reconstruct J/y →l+l- calibrate withe+e-→(2S)  (2S) → J/y p+p- <1% bckg. Shift of Mrec againts J/y with same momentum bias found Mrec(J/) < 3 MeV/c for Mrec(J/)  3 GeV/c fitted with MC with free Mrec2 off-set M2rec=0.0100.009 GeV2/c4(data/MC); introduce momentum scale bias in MC to reproduce M2rec

  36. 357fb-1,hep-ex/0507019 submm. to PRL X(3940) reconstr. D can be X(3940)→D*(→Dp)D; in either case constraint Mrec(J/yD) ~ M(D*) is ok, small PS for X(3940)→D*(→Dp)D and D*→Dp X(3940)→D(*)D ? reconstruct J/y + one D Mrec(J/yD) ~ M(D(*)) constrain Mrec(J/yD)=M(D(*)) s(Mrec(J/y))~10 MeV/c2 X(3940)→J/yw ? recon. w and one J/y; Mrec(J/yw)~M(J/y) Mrec(J/yD0(±)) D side band N(DD)=86±17 N(D*D)=55±18 (shapes fixed from MC e+e-→J/yDD, e+e-→J/yD*D, e+e-→J/yD*D*) signal shape from D*D tagged sample N<7.4 @90% C.L.

  37. 357fb-1,hep-ex/0507019 submm. to PRL X(3940) J/yDD J/yDD* 266±63 evts 5s bkg: polynomial+DD threshold (e+e-→J/yDD observed); signif. of threshold 2.3 s; if removed signal signif. 5.6 s combined signif. inclusive/tag (veto tag in inclusive) 5.9s (most conservative bkg) BWG(MC s=10 MeV/c2) for J/yDD fixed to J/yDD* systematics on M: ±5 MeV/c2 fitting ±3 MeV/c2 mass scale inclusive yield:sBorn(e+e-→J/yX) x B>2=10.6±2.5±2.4 fb

  38. 357fb-1,hep-ex/0507019 submm. to PRL X(3940) inclusively reconstructed, f(‘) fraction of all with > 2 charged DD* tagged measured fraction of X(3940) decays to DD* among all > 2 body decays f/f’ > 1 => DD branching fraction Ecutoff: cut on ISR g energ. (ds/dW)meas Ecutoff independ., model depend. Ecutoff=10 MeV, q2=10.6 GeV  f=0.525 reduce model depend.  (ds/dW)Born (s for process w/o ISR, non-physical, easier comparison to theory) Ecutoff=10 MeV  fBorn(Ecutoff)=0.63 (BN636, eq. (5))

  39. 357fb-1,hep-ex/0507019 submm. to PRL X(3940) sBorn(e+e- →J/y Hcc)xB>2 [fb]: hep-ex/0507019, hep-ex/0412041 NRQCD, hep-ph/0601110 light cone, hep-ph/0601110

  40. 357fb-1,hep-ex/0507019 submm. to PRL X(3940) largest systematics on sBorn and Br: - fitting (range, DD*, D*D* threshold) - X spin (0,1,2); different BW, different ang. distrib. (efficiency), J/y prod. and helicity angles varied X(3940)=cc1’? DD* mode dominant no cc1 in Mrec X(3940)=hc’’? expected mass 4040-4060 MeV/c2 E.S.Swanson,hep-ph/0601110

More Related