- 91 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about 'ENE 428 Microwave Engineering' - hall-lee

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

Propagation in lossless-charge free media

- Attenuation constant = 0, conductivity = 0
- Propagation constant
- Propagation velocity
- for free space up = 3108 m/s (speed of light)
- for non-magnetic lossless dielectric (r = 1),

RS

Ex1 A 9.375 GHz uniform plane wave is propagating in polyethelene (r = 2.26). If the amplitude of the electric field intensity is 500 V/m and the material is assumed to be lossless, find

a) phase constant

b) wavelength in the polyethelene

RS

Propagation in dielectrics

- Cause
- finite conductivity
- polarization loss ( = ’-j” )
- Assume homogeneous and isotropic medium

RS

Loss tangent

- A standard measure of lossiness, used to classify a material as a good dielectric or a good conductor

RS

Low loss material or a good dielectric (tan « 1)

- If or < 0.1 , consider the material ‘low loss’, then

and

RS

High loss material or a good conductor (tan » 1)

- In this case or > 10, we can approximate

therefore

and

RS

High loss material or a good conductor (tan » 1)

- depth of penetration or skin depth, is a distance where the field decreases to e-1or 0.368 times of the initial field
- propagation velocity
- wavelength

RS

Ex2 Given a nonmagnetic material having r= 3.2 and = 1.510-4 S/m, at f = 3 MHz, find

a) loss tangent

b) attenuation constant

RS

Ex3 Calculate the followings for the wave with the frequency f = 60 Hz propagating in a copper with the conductivity, = 5.8107 S/m:

a) wavelength

b) propagation velocity

RS

c) compare these answers with the same wave propagating in a free space

RS

Attenuation constant

- Attenuation constant determines the penetration of the wave into a medium
- Attenuation constant are different for different applications
- The penetration depth or skin depth,

is the distance z that causes to reduce to

z = 1

z = 1/ =

RS

Good conductor

- At high operation frequency, skin depth decreases
- A magnetic material is not suitable for signal carrier
- A high conductivity material has low skin depth

RS

Currents in conductor

- To understand a concept of sheet resistance

from

Rsheet()

sheet resistance

At high frequency, it will be adapted to skin effect resistance

RS

Currents in conductor

For distance L in x-direction

Ris called skin resistance

Rskinis called skin-effect resistance

For finite thickness,

RS

Ex A steel pipe is constructed of a material for which r = 180 and = 4106 S/m. The two radii are 5 and 7 mm, and the length is 75 m. If the total current I(t) carried by the pipe is 8cost A, where = 1200 rad/s, find:

- The skin depth
- The skin resistance

RS

The Poynting theorem and power transmission

Poynting theorem

Total power leaving

the surface

Joule’s law

for instantaneous

power dissipated

per volume (dissi-

pated by heat)

Rate of change of energy stored

In the fields

Instantaneous poynting vector

RS

Uniform plane wave (UPW) power transmission

- Time-averaged power density

W/m2

amount of power

for lossless case,

W

RS

Uniform plane wave (UPW) power transmission

for lossy medium, we can write

intrinsic impedance for lossy medium

RS

Download Presentation

Connecting to Server..