250 likes | 399 Views
Delve into the intricacies of propositional logic via an engaging adventure game scenario in the Lion World. This exploration highlights key elements of logical reasoning, knowledge representation, and inference rules needed for intelligent action. From understanding the physical symbol system hypothesis to addressing limitations of conventional logic, this adventure exemplifies the need for a robust, expressive language. Engage with real-time decision-making as you navigate obstacles represented by percepts and actions, illustrating the functional application of logic in dynamic environments.
E N D
Propositional Logic • An “adventure game” example • Thinking? LOGIC
PSSS • The Physical Symbol System Hypothesis: A physical symbol system has the necessary and sufficient means for general intelligent action. Where a symbol is a designating pattern that can be combined with others to form another designating pattern. LOGIC
Knowledge Representation • Key is problem formulation – • What happens when an n-dimensional array is insufficient? • Need a language that is • Expressive and concise • Unambiguous and independent of context • Has an inference procedure for new sentences LOGIC
Inference Rules • And Elimination 1 2, ... n 1 • And Introduction 1, . . ., n 1 2, ... n LOGIC
Inference Rules (cont’d) • Or Introduction i 1 2, ... i … n • Double Negation Elimination LOGIC
Inference Rules (cont’d) • Modus Ponens (Implication Elimination) , (Chaining) , LOGIC
Inference Rules (cont’d) • Unit Resolution:, (cf.Modus Ponens) • Resolution:, is true or false. If is true, is true. If is false, is true. LOGIC
The Lion World Percepts: [Stench, Breeze, Glitter, Bump, Scream] Operators: [Right 90, Left 90, Forward, Grab, Shoot,Climb] LOGIC
The Lion World (1,1) [none,none,none,none,none] ok A ok ok LOGIC
The Lion World (1,1) [none,none,none,none,none] (2,1) [none,breeze,none,none,none] ok P? A ok B P? ok LOGIC
The Lion World (1,1) [none,none,none,none,none] (2,1) [none,breeze,none,none,none] L? A (1,2) [stench,none,none,none,none] ok ok P? ok ok B P? LOGIC
The Lion World (1,1) [none,none,none,none,none] (2,1) [none,breeze,none,none,none] (1,2) [stench,none,none,none,none] A L? ok ok (2,2) [none,none,none,none,none] (2,3)[Stench,none,Glitter,none,none] ok ok B P? LOGIC
The Lion World • The Knowledge Base ¬ S1,1 , ¬ B1,1 P3,1 , B4,1 ¬ S2,1 , B2,1 ¬ S3,2 , B3,2 S1,2 , ¬ B1,2 ¬ S2,2 , ¬ B2,2 ¬ S3,3 , ¬ B3,3 Gl 1,4 ,¬ S1,4 , ¬ B1,4 ¬ S2,4 , ¬ B2,4 ,G 2.4 B3,4 , Gl 3,4 ¬ S1,3 , ¬ B1,3 , L 1,3 B4,3 S 2.3 , ¬ B 2.3 , Gl 2.3 P4,4 LOGIC
Lion World Implications R1 : ¬ S1,1 → ¬ L1,2 /\ ¬ L2,1 R2 : ¬ S2,1 → ¬ L1,1 /\¬ L2,2 /\ ¬ L3,1 R3 : ¬ S1,2 → ¬ L1,1 /\ ¬ L2,2 /\¬ L1,3 R4 : S1,2 → L1,1 \/ L2,2 \/ L1,3 LOGIC
Lion World Implications transformed into Conjunctive Normal Form (R1-R3) R1 : ¬ S1,1 → ¬ L1,2 /\ ¬ L2,1 R1 : ¬ ¬ S1,1 \/ (¬ L1,2 /\ ¬ L2,1) R1 : S1,1 \/ (¬ L1,2 /\ ¬ L2,1) R1: (S1,1 \/ ¬ L1,2 )/\ (S1,1 \/ ¬ L2,1 ) R1: (S1,1 \/ ¬ L1,2 ), (S1,1 \/ ¬ L2,1 ) LOGIC
Lion World Implications transformed into Conjunctive Normal Form – R4 R4 : S1,2 → L1,1 \/ L2,2 \/ L1,3 R4 : ¬ S1,2 \/ (L1,1 \/ L2,2 \/ L1,3) R4: ¬ S1,2 \/ L1,1 \/ L2,2 \/ L1,3 LOGIC
The Lion World (1,1) [none,none,none,none,none] ok A ok ok LOGIC
Finding the Lion ¬ S1,1 , S1,1 \/ ¬L1,2 Unit Resolution ¬ L1,2 ¬ S1,1 , S1,1 \/ ¬L2,1 Unit Resolution ¬ L2,1 LOGIC
The Lion World (1,2) [stench,none,none,none,none] L? A ok P? ok ok B P? LOGIC
Finding the Lion S1,2 , ¬ S1,2 \/ L1,1 \/ L2,2 \/ L1,3 L1,1 \/ L2,2 \/ L1,3Unit Resolution L1,1 \/ L2,2 \/ L1,3 ,¬ L1,1 L2,2 \/ L1,3 Unit Resolution LOGIC
Finding the Lion • How do we know ¬ L2,2 ? • L2,2 \/ L1,3 ,¬ L2,2 • L1,3 Unit Resolution LOGIC
Avoiding the Lion • Don’t go forward if the lion is in front – A1,2 /\ NorthA /\ L1,3 ¬Forward • 64 rules (16 squares x 4 orientations) LOGIC
Avoiding the Lion in the next move After the Agent moves, A1,2 is no longer true, now A2,3 is true. A2,3 /\ WestA /\ L1,3 ¬Forward LOGIC
Limitations of Propositional Logic • Can’t express generalities • Need new propositions for each time stamp LOGIC