90 likes | 202 Views
中考复习专题. 二次函数的应用. 北城中学 周红军. 练习 2 、已知:用长为 12cm 的铁丝围成一个矩形,一边长为 xcm., 面积为 ycm2, 问何时矩形的面积最大?. 练习 3 、已知 x 1 、 x 2 是一元二次方程 x 2 - 2kx + 2k - 1 = 0 的两根,求 的最小值。. =(x 1 + x 2 ) 2 - 2 x 1 •x 2 = 4k 2 - 2(2k - 1) = 4k 2 - 4k + 2. = 4(k - ) 2 + 1.
E N D
中考复习专题 二次函数的应用 北城中学 周红军
练习2、已知:用长为12cm的铁丝围成一个矩形,一边长为xcm.,面积为ycm2,问何时矩形的面积最大?练习2、已知:用长为12cm的铁丝围成一个矩形,一边长为xcm.,面积为ycm2,问何时矩形的面积最大? 练习3、已知x1、x2是一元二次方程x2-2kx+2k-1=0的两根,求 的最小值。 =(x1+x2)2-2 x1•x2=4k2-2(2k-1) =4k2-4k+2 =4(k- )2+1 ∴ 当k= 时, 有最小值,最小值为1 解: ∵周长为12cm, 一边长为xcm , ∴ 另一边为(6-x)cm ∴ y=x(6-x)=-x2+6x (0< x<6) =-(x-3) 2+9 ∵ a=-1<0, ∴ y有最大值 当x=3cm时,y最大值=9 cm2,此时矩形的另一边也为3cm 答:矩形的两边都是3cm,即为正方形时,矩形的面积最大。 解:由韦达定理得:x1+x2=2k ,x1•x2=2k-1 next
例1:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。例1:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。 A D B C (2)当x= 时,S最大值= =36(平方米) (1) ∵ AB为x米、篱笆长为24米 ∴ 花圃宽为(24-4x)米 解: ∴ S=x(24-4x) =-4x2+24 x (0<x<6) (3) ∵墙的可用长度为8米 ∴ 0<24-4x ≤6 4≤x<6 ∴当x=4cm时,S最大值=32 平方米
例2:某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,羡慕投入资金1500万元进行批量生产,已知行产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,一年的销售量为20万件;销售单价每增加10元,年销售量就减少1万件.设销售单价为x(元),年销售量为y(万件),年获利(年获利=处销售额-生产成本-投资)为z(万元)。(2003湖北)例2:某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,羡慕投入资金1500万元进行批量生产,已知行产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,一年的销售量为20万件;销售单价每增加10元,年销售量就减少1万件.设销售单价为x(元),年销售量为y(万件),年获利(年获利=处销售额-生产成本-投资)为z(万元)。(2003湖北) (3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万件? (4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元,请你借助函数的大致图像说明,第二年的销售单价x(元),应确定在什么范围。
例 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间t的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目?
有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去。假设放养期内蟹的个体重量基本保持不变。现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时的市场价为每千克30元。据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。 (1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式; (2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q与x的函数关系式; (3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用)?增大利润是多少?
例2:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。例2:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。 (1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式; (2)当AP的长为何值时,S△PCQ= S△ABC = AP•PB CQ•PB = S△PCQ= 即S= (0<x<2) 动画演示 解:(1)∵P、Q分别从A、C两点同时出发,速度相等 ∴AP=CQ=x 当P在线段AB上时
S△PCQ= 即S= (x>2) 当P在线段AB的延长线上时
=2 ② =2 ∴ x1=1+ , x2=1- (舍去) ∴当AP长为1+ 时,S△PCQ=S△ABC (2)当S△PCQ=S△ABC时,有 此方程无解