slide1 n.
Download
Skip this Video
Download Presentation
Extra Practice for Sem 2, Quiz 5

Loading in 2 Seconds...

play fullscreen
1 / 20

Extra Practice for Sem 2, Quiz 5 - PowerPoint PPT Presentation


  • 117 Views
  • Uploaded on

Extra Practice for Sem 2, Quiz 5. Use special right ∆ rules to solve the triangle. Answers in simplified radical form. I have the short leg, so to get  long leg, multiply by √3  hyp , multiply by 2. 30 . 42. 21√3. 60 . 21.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Extra Practice for Sem 2, Quiz 5' - gryta


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide2

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the short leg, so to get

 long leg, multiply by √3

 hyp, multiply by 2

30

42

21√3

60

21

slide3

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have a leg, so the other leg is congruent, and to get the hyp, multiply by √2

45

21√2

21

45

21

slide4

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

9√3

30

I have the hyp, so get short leg first by dividing by 2

9

18

60

Then, from the short leg to get the long leg, multiply by √3

slide5

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

17√3

2

I have the hyp, so get short leg first by dividing by 2

30

17

2

17

60

Then, from the short leg to get the long leg, multiply by √3

slide6

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the hyp, so get short leg first by dividing by 2

7√2

60

Then, from the short leg to get the long leg, multiply by √3

7√6

14√2

30

slide7

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the hyp, so get short leg first by dividing by 2

12√3

60

Then, from the short leg to get the long leg, multiply by √3

36

24√3

30

12√3•√3 = 12•3 = 36

slide8

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the long leg, so get short leg first by dividing by √3

24

60

Then, from the short leg to get the hyp, multiply by 2

24√3

48

30

slide9

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the long leg, so get short leg first by dividing by √3

10√2

60

Then, from the short leg to get the hyp, multiply by 2

10√6

20√2

30

√2

10√6

√3

= 10√2

slide10

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the long leg, so get short leg first by dividing by √3

6√3

60

Then, from the short leg to get the hyp, multiply by 2

18

12√3

30

18

√3

• √3

• √3

= 18√3

3

= 6√3

slide11

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the long leg, so get short leg first by dividing by √3

40√3

3

30

20

Then, from the short leg to get the hyp, multiply by 2

20

√3

• √3

• √3

= 20√3

3

60

20√3

3

slide12

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the hyp, so to get the legs, divide by √2

45

12√10

12√5

√5

12√10

√2

= 12√5

45

12√5

slide13

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the hyp, so to get the legs, divide by √2

21√2

21√2

42

√2

• √2

• √2

= 42√2

2

45

45

42

= 21√2

slide14

Use special right ∆ rules to solve the triangle. Answers in simplified radical form

I have the hyp, so to get the legs, divide by √2

45

5√7

5√14

2

5√7

√2

• √2

• √2

= 5√14

2

45

5√14

2

slide15

Use SohCah Toa, or the Pythagorean Thm, to solve the triangle. Round to the nearest tenth.

I have the hyp and the side adjto A, so I will use the cos.

B

23

cosA = 16/23

A = cos-1 (16/23)

A = 45.9

45.9

C

A

16

slide16

Use SohCah Toa, or the Pythagorean Thm, to solve the triangle. Round to the nearest tenth.

I have the hyp and the side oppto B, so I will use the sin.

B

23

44.1

sinA = 16/23

A = sin-1 (16/23)

A = 44.1

45.9

C

A

16

Check: 44.1 + 45.9 = 90 yes!

slide17

Use SohCah Toa, or the Pythagorean Thm, to solve the triangle. Round to the nearest tenth.

I have several choices for finding the missing side. I am using the sin of A; I’m looking for adjside, and I have the hyp.

B

23

44.1

sin (45.9) = x

1 23

x = 23sin(45.9)

x = 16.5

16.5

45.9

C

A

16

Check: 16.52 + 162 = 232

528.25 ≈ 529

slide18

Use SohCah Toa, or the Pythagorean Thm, to solve the triangle. Round to the nearest tenth.

I have the side oppof A, so I will use the sinto find the hyp.

B

139.5

50

sin (21) = 50

1 x

x sin (21) = 50

x = 50

sin (21)

x = 139.5

21

A

C

slide19

Use SohCah Toa, or the Pythagorean Thm, to solve the triangle. Round to the nearest tenth.

I have the side oppof A, so I will use the tan to find the adjside.

B

139.5

50

tan (21) = 50

1 x

x tan (21) = 50

x = 50

tan (21)

x = 130.3

21

A

130.3

C

Check: 502 + 130.32 = 139.52

19452.04 ≈ 19460.25

slide20

Use SohCah Toa, or the Pythagorean Thm, to solve the triangle. Round to the nearest tenth.

B

B = 90 – 21 = 69

139.5

69

50

21

A

130.3

C

Check: sin(69) = 130.3 / 139.5

.9336 ≈ .9341