slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
INTRODUCTION PowerPoint Presentation
Download Presentation
INTRODUCTION

Loading in 2 Seconds...

play fullscreen
1 / 9

INTRODUCTION - PowerPoint PPT Presentation


  • 73 Views
  • Uploaded on

A NEUTRON IRRADIATION DEVICE FOR THE TESTING OF MICROELECTRONIC COMPONENETS TO BE USED IN THE RADIATION ENVIRONMENT OF HIGH-ENERGY PARTICLE ACCELERATORS AT DESY B. Mukherjee 1 , D. Makowski 2 , A. Kalicki 3 , D. Rybka 3 , M. Grecki 2 , S. Simrock 1

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'INTRODUCTION' - grady


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

A NEUTRON IRRADIATION DEVICE FOR THE TESTING OF MICROELECTRONIC COMPONENETS TO BE USED IN THE RADIATION ENVIRONMENT OF HIGH-ENERGY

PARTICLE ACCELERATORS AT DESY

B. Mukherjee1, D. Makowski2, A. Kalicki3, D. Rybka3,

M. Grecki2 , S. Simrock1

1Deutsches Elektronen Synchrotron, Hamburg, Germany

2Department of Microelectronics and Computer Science, TUL, Poland

3Institute of Electronic Systems, WUT, Poland

12th International MIXDES Conference, 22-25 June 2005, Krakow, Poland

slide2

INTRODUCTION

A significant number of microelectronic instrumentation and control devices vital to the operation of the VUV-Free Electron Laser (FEL) of DESY will be located in the close vicinity of the 1.2 GeV super-conducting electron linac driving the FEL.

During the linac operation the microelectronic components will be subjected to parasitic radiation field, primarily made of brems-strahlung and photoneutrons.

The radiation exposure will trigger Soft-Error (Single Event Upset) as well as Permanent Damage in the electronic circuitry.

We have developed a variable energy neutron irradiation device for the radiation effect testing of microelectronic components.

The device is based on a 241Am-Be(a, n) source placed at the centre of a water filled jar acting as neutron moderator. The neutron energy variation is accomplished by varying the jar diameter.

slide4

THE NEUTRON IRRADIATION DEVICE

Legend

B: Thermal Neutron Shield (Borated Polyethylene)

D: Device under Test (DUT)

H: Table

J1, J2: Jars (16 and 33 cm radius respectively)

P: Stand

S: 241Am-Be Neutron source

T: Tripod (Source holder)

Photograph of the neutron

Irradiation device showing diverse types of DUT

under irradiation.

slide5

CHARACTERISTICS OF THE NEUTRON RADIATION FIELD

The Reference Neutron Spectra

(a) Un-moderated, En (av) = 5.2 MeV

(b) Moderated (6.9 cm H2O), En (av) = 4.1 MeV

(c) Moderated (15.9 cm H2O), En (av) = 3.2 MeV

The areas under the histogram (a), (b) and (c)

are normalised to unity.

Legend

Tmod = Moderator (H2O) Thickness

SDD = Source to Detector Distance

Hnm = Measured Neutron Dose Equiv.

Hnc = Calculated Neutron Dose Equiv

Hgm = Measured Gamma Dose Equiv.

* With thermal neutron shield

slide6

VERIFICATION OF THE REFERENCE RADIATION FIELD

Neutron Detector

The Neutron Dose Equivalent at various moderator thicknesses was verified by Superheated Bubble Dosimeters (Gamma Insensitive)

Gamma Detector

The background Gamma Dose at various moderator thicknesses was verified by a PIN Diode based miniature Electronic Dosimeter

(Neutron Insensitive)

slide7

TESTING OF MICROELCTRONIC COMPONENTS

We have irradiated the following items

(1) Commercially available SRAM chips of 256, 512, 1024 and 2048 kB

memory density (s. Table below)

(2) Two miniature CCD Cameras

Irradiation Parameters

(1) Un-moderated neutrons

(2) Neutrons moderated with 6.9 cm H2O layer

(3) Moderated neutrons (as above),Shielded (3.5 mm Bor-Poly) Irradiation device

Specifications of the SRAM (Static Random Access Memory) Chips used in this Investigation.

slide8

TEST RESULTS

Neutron induced SEU in CCD Cameras for two exposure modes.

Number of SEU in 512 kB SRAM Chips induced by neutrons for three exposure modes.

Results showing the neutron irradiation effects in SRAM chips of four different

memory densities.

slide9

SUMMARY AND CONCLUSION

We have demonstrated the construction and operation principles of a simple variable energy neutron irradiation device based on an isotopic neutron source.

The system consists of a 241Am-Be (a, n) source located at the centre of an assembly of concentric polyethylene jars of 8.0 and 16.5 cm radius respectively.

The primary neutrons from the 241Am-Be (a, n) source with an energy of 5.2 MeV was moderated with 6.9 (Jar 1) and 15 (Jar 2) cm thick water layers to obtain the neutron radiation field of 4.1 and 3.2 MeV average energy respectively.

The neutron dose equivalents at different configurations (Moderator layer thickness) and the corresponding gamma background doses were estimated with Superheated bubble dosimeter and PIN diode dosimeter respectively.

A cylindrical thermal neutron shield made of 3.5 mm thick borated polyethylene sheet was used to attenuate the thermal neutron component of the irradiation field.

A radiation hardness of various microelectronic devices like, SRAM and FPGA chips as well as CCD cameras have been tested using the above device prior to their installation in the high-energy accelerator environment at DESY.

THANK YOU FOR YOUR ATTENTION

(bhaskar.mukherjee@desy.de)