330 likes | 487 Views
Proof of the middle levels conjecture. Torsten Mütze. The middle layer graph. Consider the cube. 11...1. 111. level 3. level 2. 110. 101. 011. level 1. 100. 010. 001. level 0. 000. 00... 0. Middle layer graph. The middle layer graph. Middle layer of . 10110. 10101.
E N D
Proof of the middle levels conjecture Torsten Mütze
The middlelayergraph • Consider the cube 11...1 111 • level 3 • level 2 110 101 011 • level 1 100 010 001 • level 0 000 00...0 Middlelayergraph
The middlelayergraph • Middlelayer of 10110 10101 01101 01011 00111 11100 11010 11001 10011 01110 10001 01100 00110 00101 00011 11000 10100 10010 01010 01001 • bipartite, connected • number of vertices: • degree:
The middlelayergraph • Middlelayer of 10110 10101 01101 01011 00111 11100 11010 11001 10011 01110 10001 01100 00110 00101 00011 11000 10100 10010 01010 01001 • bipartite, connected • number of vertices: • degree: • automorphisms:bitpermutation + inversion,
The middlelayergraph • Middlelayer of 10110 10101 01101 01011 00111 11100 11010 11001 10011 01110 10001 01100 00110 00101 00011 11000 10100 10010 01010 01001 • bipartite, connected • number of vertices: • degree: • automorphisms:bitpermutation+ inversion,
The middlelayergraph • Middlelayer of 10110 10101 01101 01011 00111 11100 11010 11001 10011 01110 10001 01100 00110 00101 00011 11000 10100 10010 01010 01001 • bipartite, connected • number of vertices: • degree: • automorphisms:bitpermutation + inversion, • vertex-transitive
The middlelevelsconjecture Conjecture: The middlelayergraphcontains a Hamilton cycleforevery . • probablyfirstmentioned in [Havel 83], [Buck, Wiedemann 84] • also attributed to Dejter, Erdős, Trotter[Kierstead, Trotter 88]and variousothers • exercise (!!!) in [Knuth 05]
The middlelevelsconjecture Conjecture: The middlelayergraphcontains a Hamilton cycleforevery . • Motivation: • Gray codes • Conjecture[Lovász 70]: Everyconnectedvertex-transitivegraphcontains a Hamilton path.
History of the conjecture Numericalevidence: The conjectureholdsfor all [Moews, Reid 99], [Shields, Savage 99],[Shields, Shields, Savage 09], [Shimada, Amano 11]
History of the conjecture • Asymptoticresults: • The middlelayergraphcontains a cycle of length • [Savage 93] • [Felsner, Trotter 95] • [Shields, Winkler 95] • [Johnson 04]
History of the conjecture Otherrelaxations and partial results: [Kierstead, Trotter 88][Duffus, Sands, Woodrow 88][Dejter, Cordova, Quintana 88][Duffus, Kierstead, Snevily 94][Hurlbert 94][Horák, Kaiser, Rosenfeld, Ryjácek 05][Gregor, Škrekovski 10]…
Ourresults Theorem 1: The middlelayergraphcontains a Hamilton cycleforevery . Theorem 2: The middlelayergraphcontains different Hamilton cycles. Remarks: number of automorphismsisonly ,so Theorem 2 isnot an immediate consequence of Theorem 1
Ourresults Theorem 1: The middlelayergraphcontains a Hamilton cycleforevery . Theorem 2: The middlelayergraphcontains different Hamilton cycles. Remarks: number of Hamilton cyclesis at most ,so Theorem 2 is best possible
Proofideas Step 1:Build a 2-factor in the middlelayergraph Step 2: Connect the cycles in the 2-factor to a singlecycle
Structure of the middlelayergraph A Hamilton cycle Catalannumbers
Structure of the middlelayergraph A Hamilton cycle
Structure of the middlelayergraph A Hamilton cycle
Structure of the middlelayergraph A Hamilton cycle
Structure of the middlelayergraph A Hamilton cycle
Step 1: Build a 2-factor Constructionfrom[M., Weber 12] isomorphism (bitpermutation + inversion) ???
Step 1: Build a 2-factor Constructionfrom[M., Weber 12] 2-factor isomorphism (bitpermutation + inversion)
Step 1: Build a 2-factor Constructionfrom[M., Weber 12] • parametrizingyields different 2-factors • essentiallyonlyonecanbeanalyzed: = plane treeswithedges 2-factor Fundamental problem:varyingchangesglobally
Step 2: Connect thecycles New ingredient: Flippablepairs is a flippablepair,ifthereis a flipped pair 2-factor such that
Step 2: Connect thecycles New ingredient: Flippablepairs is a flippablepair,ifthereis a flipped pair 2-factor such that
Step 2: Connect thecycles New ingredient: Flippablepairs 2-factor flippable pairsyielddifferent 2-factors + verypreciselocalcontrol …wecanconstructmanyflippablepairs
Step 2: Connect thecycles New ingredient: Flippablepairs 2-factor Auxiliarygraph
Step 2: Connect thecycles Lemma 1:Ifisconnected, then the middlelayergraphcontains a Hamilton cycle. Lemma 2:Ifcontains different spanningtrees, then the middlelayergraphcontains different Hamilton cycles. 2-factor Auxiliarygraph
The crucialreduction Provethat isconnected (has manyspanningtrees) Provethat middlelayergraph contains a Hamilton cycle (many Hamilton cycles)
Analysis of 2 leaves 6 leaves 5 leaves 4 leaves 3 leaves = plane treeswithedges
Analysis of 2 leaves 6 leaves 5 leaves 4 leaves 3 leaves = plane treeswithedges