1 / 39

Johann Zmeskal, SMI Vienna for the PANDA collaboration

at. an overview. Johann Zmeskal, SMI Vienna for the PANDA collaboration. International Workshop on e+e - collisions from Phi to Psi September 19-22, 2011, Budker INP, Novosibirsk, Russia. FAIR @ GSI. Existing facility - GSI: UNILAC < 15 MeV /u SIS < 1-2 GeV /u

gloria
Download Presentation

Johann Zmeskal, SMI Vienna for the PANDA collaboration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. at an overview Johann Zmeskal, SMI Vienna for the PANDA collaboration International Workshop on e+e- collisions from Phi to Psi September 19-22, 2011, Budker INP, Novosibirsk, Russia PhiPsi2011 BINP, Novosibirsk

  2. FAIR @ GSI Existing facility - GSI: UNILAC < 15 MeV/u SIS < 1-2 GeV/u ESR < 0.8 GeV/u SIS 100 SIS 300 SIS 18 PANDA Super RFS HESR FLAIR Facility for Antiproton and Ion Research CR/ RESR NESR PhiPsi2011 BINP, Novosibirsk

  3. Facility for Antiproton and Ion Research PhiPsi2011 BINP, Novosibirsk

  4. Facility for Antiproton and Ion Research • Parallel Operation • High duty cycle • Rapidly cycling magnets SIS300 PANDA • Antiproton production • bunched mod • 50 ns bunches • cycle time: 10 s • 108 per bunch PhiPsi2011 BINP, Novosibirsk

  5. Five Pillars of Research at FAIR Nuclear Structure Physics and Nuclear Astrophysics with RIBs Hadron Physics with Antiproton Beams Physics of Nuclear Matter with Relativistic Nuclear Collisions Atomic Physics and Applied Science with Highly Charged Ions and Low Energy Antiprotons PlasmaPhysicswithHighly Bunched Beams PhiPsi2011 BINP, Novosibirsk

  6. PANDA @ HESR • High Energy Storage Ring • Up to 1011 stored antiprotons • Beam momentum: (1.5 ... 15) GeV/c • Phase-space cooling • Fixed internal target Stochastic cooling Electron cooler • Operation modes • High luminosity: L = 2 · 1032 cm-2 s-1 p/p  10-4 • High resolution: L = 1031 cm-2 s-1 p/p  4· 10-5 Stochastic cooling Injection PhiPsi2011 BINP, Novosibirsk

  7. Physics goals of PANDA • Study the strong interaction with antiprotons • Questions ... • Mechanism of confinement ? • Inner structure of hadrons ? • Origin of mass and spin (macroscopic properties) ? • Exotic colour neutral objects? Particle physics Hadron physics Nuclear physics PhiPsi2011 BINP, Novosibirsk

  8. Physics goals of PANDA HadronSpectroscopy Experimental Goals: mass, width & quantum numbers of resonances Charm Hadrons: charmonia, D-mesons, charm baryons to understand new XYZ states, Ds(2317) and others Exotic QCD States: glueballs, hybrids, multi-quarks  Spectroscopy with Antiprotons: Production of states of all quantum numbers Resonance scanning with high resolution PhiPsi2011 BINP, Novosibirsk

  9. Physics goals of PANDA Nuclear Physics Charm in the Medium • Mesons in nuclear matter • Masses change in nuclei D-mass lower Lower D D threshold • J/ψ absorption in nuclei Hypernuclei • 3rd dimension in nuclear chart • Double hypernuclei production via Ξ- capture  Λ Λ interaction in nucleus Other topics • Short range correlations • Color transparency PhiPsi2011 BINP, Novosibirsk

  10. Physics goals of PANDA HadronStructure GeneralizedPartonDistributions • Formfactors and structure functions Timelike Nucleon Formfactors Drell-Yan Process full PWA or polarized beam/target • PANDA Physics Report • www-panda.gsi.de PhiPsi2011 BINP, Novosibirsk

  11. PANDA Detector @ FAIR 13 m PhiPsi2011 BINP, Novosibirsk

  12. PANDA Requirements Detector requirements: 4π acceptance High rate capability: 2x107s-1 interactions Efficient event selection  Continuous acquisition Momentum resolution ~1% Vertex info for D, K0S, Y (cτ = 317 µm for D±)  Good tracking Good PID (γ, e, µ, π, K, p)  Cherenkov, ToF, dE/dx γ-detection 1 MeV – 10 GeV  Crystal Calorimeter • Physics benchmarks: • Hybrid charmonium: e.g. 7 photons, PWA • Charmonium decays:e.g. J/Ψ→e+e- /µ+µ-, or with π0 and γ • Charm mesons:Weak decays in K0S and K± • Hypernuclei:Hyperon cascades • Wide angle Compton • scattering:High energy photons • Proton formfactors:Efficient e± identification PhiPsi2011 BINP, Novosibirsk

  13. The PANDA Spectrometer Target Spectrometer Forward Spectrometer Target PhiPsi2011 BINP, Novosibirsk

  14. PANDA - detection concept PhiPsi2011 BINP, Novosibirsk

  15. The PANDA Spectrometer TARGET SPECTROMETER FORWARD SPECTROMETER Dipole Target Drift Chambers Solenoid Muon ID Muon Range System DIRC Electromag. Calorimeters RICH Central Tracker Vertex PhiPsi2011 BINP, Novosibirsk L. Schmitt, GSI

  16. The PANDA Spectrometer Micro Vertex Detector Beam pipe PhiPsi2011 BINP, Novosibirsk

  17. The PANDA Spectrometer Forward GEM tracker Central tracker PhiPsi2011 BINP, Novosibirsk

  18. The PANDA Spectrometer Cherenkov detectors PhiPsi2011 BINP, Novosibirsk

  19. The PANDA Spectrometer Electromagnetic crystal calorimeters PhiPsi2011 BINP, Novosibirsk

  20. The PANDA Spectrometer Instrumented yoke Solenoid magnet PhiPsi2011 BINP, Novosibirsk

  21. The PANDA Spectrometer Muonfilter Target Dipole magnet Luminosity monitor PhiPsi2011 BINP, Novosibirsk

  22. The PANDA Spectrometer Drift chambers Muon range system DIRC PhiPsi2011 BINP, Novosibirsk

  23. PANDA - Solenoid • Superconducting magnet • Central field: |B| = Bz= 2 T • High field homogeneity:  2% • Dimensions inner bore: 1.9 m / length: 2.7 m Coil and cryostate Laminated layers for muon range system Iron flux return yoke Target pipewarm hole z beam axis • Outer yoke dimension:  2.3 m / length: 4.9 m • Total weight: ~ 300 t PhiPsi2011 BINP, Novosibirsk

  24. PANDA – Dipole magnet • Superconducting magnet • Field integral (bending power): 2 Tm Deflection of antiprotons with p =15 GeV/c: 2.2° • Bending variation:  15% • Vertical acceptance:  5° • Horizontal acceptance:  10° • Total weight: 200 t Forward tracking detectors partly integrated PhiPsi2011 BINP, Novosibirsk

  25. PANDA – Target system Target production (VP) (VP) Injection point Target pipe • Primary target setup • Appropriate cut-outs in solenoid magnet • Beam-target cross • Design compatible with all different options Beam pipe ~ 2 m Vacuum pumps (VP) Target dumping system (VP) PhiPsi2011 BINP, Novosibirsk

  26. PANDA – Cluster-jet target system • Cluster-jet target • Well adjustable density • Constant luminosity • Cluster size: • 100 ... 1000 atoms • Full-size prototype • Achieved density:max. 8 1014 atoms / cm2 • Stable operation • Further density increase: New nozzle design PhiPsi2011 BINP, Novosibirsk

  27. PANDA – Pellet target system • Pellet target • Higher density • Better vertex definition Pellet tracking system • Pellet size:  30 m • Pellet frequency: 10 kHz • Problem: Luminosity variations Smaller pellet sizes  Higher frequency • Dedicated prototypes • Achieved density: 4 1015 atoms / cm2 • Pellet stream:  3 mm Hydrogen droplets: < 10 m, 144 kHz PhiPsi2011 BINP, Novosibirsk

  28. PANDA – Tracking Forward spectrometer Target spectrometer Micro-VertexDetector Outer tracker GEM stations Straw-tube layers Forward tracking(Straight lines) Central tracking (Helix fit) PhiPsi2011 BINP, Novosibirsk

  29. PANDA – Micro Vertex Detector Design of the MVD • 4 barrels and 6 disks • Continuous readout • Inner layers: hybrid pixels • (100x100 µm2) • Outer layers: • double sided strips: • Rectangles & trapezoids • NXYTER readout • Mixed forward disks (pixel/strips) Challenges • Low mass supports • Cooling in a small volume • Radiation tolerance PhiPsi2011 BINP, Novosibirsk

  30. PANDA – Central tracker Central Tracker • σrφ~150µm , σz~1mm • δp/p~1% (with MVD) • Material budget ~1% X0 • Straw Tube Tracker • 27 µm thin mylar tubes, 1 cm Ø • Stability due to 1 bar overpressure • GEM Time Projection Chamber • Continuous sampling • GEMs to reduce ion feedback • Online track finding Forward GEM Tracker • Large area GEM foils • Ultra thin coating PhiPsi2011 BINP, Novosibirsk

  31. PANDA – Straw tubes Detector Layout • 4500 straws in 20-26 layers • Tube made of 27µmthin Al-mylar, Ø=1cm • Rin= 150 mm, Rout= 420 mm l=1500 mm • Self-supporting straw double layers at ~1 bar overp.(Ar/CO2) Material Budget • Max. 26 layers, • 0.05 % X/X0 per layer • Total 1.3% X/X0 Detector performance • r/ resolution: 130 µm • z resolution: ~ 1 mm • Prototype test at COSY-TOF PhiPsi2011 BINP, Novosibirsk

  32. PANDA – Particle IDentification PANDA PID Requirements: • Particle identification essential • Momentum range 200 MeV/c – 10 GeV/c • Different processes for PID needed PID Processes: • Cherenkov radiation: above 1 GeV Radiators: quartz, aerogel, C4F10 • Energy loss: below 1 GeV Best accuracy with TPC • Time of flight Problem: no start detector • Electromagnetic showers: • EMC for e and γ PhiPsi2011 BINP, Novosibirsk

  33. PANDA – Cherenkov detectors Forward spectrometer Target spectrometer Barrel DIRC Disc DIRC RICH D etection of I nternally R eflected C herenkov light R ingI magingCH erenkov detector Radiator materials: Aerogel / C14F10/K separation2 GeV/c  p  15 GeV/c Radiator material: Fused silica 3 /K separation0.8 GeV/c  p  5 GeV/cC PhiPsi2011 BINP, Novosibirsk

  34. PANDA – Calorimeter Forward spectrometer Target spectrometer Barrel EMC Endcap structures Shashlyk calorimeter Operated at -25°C Cristal: PbWO4 Lead-scintillator sandwiches 351 modules (13 rows / 27 columns) ~ 15,000 cristals PhiPsi2011 BINP, Novosibirsk

  35. PANDA – Calorimeter PANDA PWO Crystals PWO is dense and fast Low γ threshold  Increase light yield: - operation at -25°C (4xCMS) Challenges: - temperature stable to 0.1°C - control radiation damage - low noise electronics Delivery of crystals started Barrel Calorimeter 11000 PWO Crystals LA-SiPMreadout, 2x1cm2 σ(E)/E~1.5%/√E + const. End cap 4000 PWO crystals High occupancy in center LA-SiPMor VPT PhiPsi2011 BINP, Novosibirsk

  36. PANDA – Time-of-flight systems Forward spectrometer Target spectrometer Barrel tile hodoscope Scintillator wall SiPM Scintillator Quad module Time resolution: (50...100) ps Scintillator slabs or pads of multigap resistive plate chambers (RPC) Scintillator slabsTime resolution: ~ 50 ps PhiPsi2011 BINP, Novosibirsk

  37. PANDA – DAQ Self triggered readout Components: Time distribution system Intelligent frontends Powerful compute nodes High speed network Data Flow: Data reduction Local feature extraction Data burst building Event selection Data logging after online reconstruction Programmable Physics Machine PhiPsi2011 BINP, Novosibirsk

  38. Summary • FAIR will offer unique opportunities for nuclear and hadron physics, plasma and • atomic physics • PANDA is THE DETECTOR to access the physics in the charm quark sector • Nearly 4 acceptance • High momentum resolution ~1% • Precise vertex resolution ~ 100 m • Good particle identification ( , e, , , p ) • Photon detection in a wide range ( 1 MeV ... 10 GeV) • High energy resolution ~ few % (or better) • Technical design finished 2011 • Installation in 2016 PhiPsi2011 BINP, Novosibirsk

  39. more than 400 physicists from 53 institutions in 16 countries IPN Orsay U & INFN Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnicodi Torino U & INFN Trieste U Tübingen TSL Uppsala U Uppsala U Valencia SMI Vienna SINS Warsaw TU Warsaw U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice IMP Lanzhou U Lund U Mainz U Minsk ITEP Moscow MPEI Moscow TU München U Münster BINP Novosibirsk U Basel IHEP Beijing U Bochum IIT Bombay U Bonn IFIN-HH Bucharest U & INFN Brescia U & INFN Catania JU Cracow TU Cracow IFJ PAN Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston Thank you! PhiPsi2011 BINP, Novosibirsk

More Related