170 likes | 305 Views
This document outlines the control methods for collimator alignment in the IR7 sector. The alignment will utilize a dedicated survey train and employs local smoothing between quadrupoles based on strategies similar to those used during initial alignment. Regular measurements will ensure precision and monitoring after collimator replacement. Advanced techniques like digital close-range photogrammetry and wire offset measurements are used for fast, non-contact assessments. The document also details the installation procedures, operation sequences, and benchmark tests, highlighting the system's reliability and measurement precision.
E N D
Collimation Working Group #127 Collimator Alignment Control IR 7 and 3 Patrick Bestmann 06/06/2011
Control of the Collimator alignment • The alignment of the collimators will be controlled using a dedicated survey train. • Strategy is the same as for the initial alignment (local smooting between quadrupoles) • Regular controlmeasurements • Control of the alignment after exchange of a collimator • The alignment deviations can be given to the collimator operation.
Tractionunit Sensor unit Controlunit Batteryunit
Concept • Digital closerangephotogrammetry • Fast and non contactmeasurement of theactivatedcollimators • Wireoffsetmeasurementstodetecttrainpositionand link the different aquisitionvolumes. • Reliablereferenceoverlongdistances Collimators Quad Quad
Survey train • The train is based on a combination of close range photogrammetry and streched wire measurements • All collimators in IR7 are equipped with additional photogrammetric targets (350) • 5 Overlapping wires are installed along the LSS7 as straight reference for the train
Operation sequence • Installation in IR7 (uptream of MCBWV_4R7) • Startup and calibration check • Visual control of wires and weights • Start of Sequencer • Autonomous movements and aquisition • Online calculation and results in situ • Stability tests and aquisition ≈ 100 sec. • Operation Video
Benchmark Test • Real size mock-up in 927 • Two collimators and 5 reference magnets • Setup is measured with a Laser Tracker as reference coordinates for benchmark test • Fully independend measurements even with different targets. • Precision of reference measurements 0.15mm
LGC Residuals POINT 1 POINT 2 POINT 3 OBSERVE SIGMA CALCULE RESIDU RES (M) (MM) (M) (MM) /SIG LHC____GISP_____6L7_ LHC____MQWA____B6L7S LHC____GISP_____4L7_ 0.47469 0.10 0.47468 -0.00 -0.02 LHC____GISP_____6L7_ LHC____MQWA____B6L7E LHC____GISP_____4L7_ 0.64842 0.10 0.64842 0.00 0.05 LHC____GISP_____6L7_ LHC____TCP_____E6L7C LHC____GISP_____4L7_ 0.91386 0.10 0.91377 -0.09 -0.92 LHC____GISP_____6L7_ LHC____TCP_____E6L7F LHC____GISP_____4L7_ 0.82393 0.10 0.82388 -0.05 -0.52 LHC____GISP_____6L7_ LHC____TCP_____E6L7G LHC____GISP_____4L7_ 0.71828 0.10 0.71826 -0.03 -0.27 LHC____GISP_____6L7_ LHC____TCP_____E6L7H LHC____GISP_____4L7_ 0.82279 0.10 0.82278 -0.01 -0.13 LHC____GISP_____6L7_ LHC____TCP_____E6L7D LHC____GISP_____4L7_ 0.91261 0.10 0.91263 0.02 0.22 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7C LHC____GISP_____4L7_ 0.19867 0.10 0.19864 -0.03 -0.28 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7F LHC____GISP_____4L7_ 0.28869 0.10 0.28866 -0.03 -0.30 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7G LHC____GISP_____4L7_ 0.39342 0.10 0.39339 -0.02 -0.24 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7H LHC____GISP_____4L7_ 0.28817 0.10 0.28815 -0.02 -0.22 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7D LHC____GISP_____4L7_ 0.19825 0.10 0.19824 -0.02 -0.16 LHC____GISP_____6L7_ LHC____MQWA____A5L7E LHC____GISP_____4L7_ 0.57857 0.10 0.57859 0.02 0.17 LHC____GISP_____6L7_ LHC____MQWA____B5L7E LHC____GISP_____4L7_ 0.28824 0.10 0.28825 0.01 0.09 LHC____GISP_____6L7_ LHC____MQWA____B5L7S LHC____GISP_____4L7_ 0.28894 0.10 0.28895 0.01 0.09 LHC____GISP_____6L7_ LHC____MQWA____C5L7E LHC____GISP_____4L7_ 0.28822 0.10 0.28822 0.01 0.09 LHC____GISP_____6L7_ LHC____MQWA____B6L7S LHC____GISP_____4L7_ 0.47468 0.10 0.47468 0.00 0.02 LHC____GISP_____6L7_ LHC____MQWA____B6L7E LHC____GISP_____4L7_ 0.64843 0.10 0.64842 -0.01 -0.05 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7C LHC____GISP_____4L7_ 0.19860 0.10 0.19864 0.04 0.35 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7F LHC____GISP_____4L7_ 0.28863 0.10 0.28866 0.03 0.28 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7G LHC____GISP_____4L7_ 0.39337 0.10 0.39339 0.02 0.21 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7H LHC____GISP_____4L7_ 0.28812 0.10 0.28815 0.03 0.26 LHC____GISP_____6L7_ LHC.B2_TCSG_____6L7D LHC____GISP_____4L7_ 0.19823 0.10 0.19824 0.01 0.10 LHC____GISP_____6L7_ LHC____MQWA____A5L7E LHC____GISP_____4L7_ 0.57861 0.10 0.57859 -0.02 -0.17 LHC____GISP_____6L7_ LHC____MQWA____B5L7E LHC____GISP_____4L7_ 0.28826 0.10 0.28825 -0.01 -0.08 LHC____GISP_____6L7_ LHC____MQWA____B5L7S LHC____GISP_____4L7_ 0.28896 0.10 0.28895 -0.01 -0.09 LHC____GISP_____6L7_ LHC____MQWA____C5L7E LHC____GISP_____4L7_ 0.28823 0.10 0.28822 -0.01 -0.09 RESIDU MOYEN = -0.00 MM : LIMITES DE CONFIANCE A 95.0 = (-0.01, 0.01) ECART-TYPE = 0.03 MM : LIMITES DE CONFIANCE A 95.0 = (0.03, 0.04)
Test Results: Comparison to theory SIGMA ZERO A POSTERIORI = 0.18061 , VALEUR CRITIQUE = (0.66705, 1.33264) POINT X Y Z ID DX DY DZ DCUM OPTION LHC____MQWA____B6L7S 0.07463 2.67950 0.55230 -1 0.0 0.0 0.0 -1.00000 CALA LHC____MQWA____C5L7E 0.26494 24.56889 0.54781 -1 0.0 0.0 0.0 -1.00000 CALA LHC____MQWA____B5L7S 0.26327 19.17045 0.54864 -1 -0.14 0.00 0.0 -1.00000 VXY LHC____MQWA____B5L7E 0.26302 13.77049 0.54904 -1 -0.21 0.00 0.0 -1.00000 VXY LHC____MQWA____A5L7E -0.02799 9.90808 0.42778 -1 -0.25 0.00 0.0 -1.00000 VXY LHC.B2_TCSG_____6L7D 0.35188 7.31930 0.28024 -1 -0.25 0.11 0.0 -1.00000 VXY LHC.B2_TCSG_____6L7H 0.26196 7.31948 0.28246 -1 0.02 -0.03 0.0 -1.00000 VXY LHC.B2_TCSG_____6L7G 0.15668 7.11967 0.28642 -1 -0.18 0.01 0.0 -1.00000 VXY LHC.B2_TCSG_____6L7F 0.26137 6.91947 0.28479 -1 -0.06 0.03 0.0 -1.00000 VXY LHC.B2_TCSG_____6L7C 0.35139 6.91931 0.28254 -1 0.01 0.05 0.0 -1.00000 VXY LHC____TCP_____E6L7D -0.36292 4.93016 0.28785 -1 0.22 0.01 0.0 -1.00000 VXY LHC____TCP_____E6L7H -0.27306 4.93041 0.28767 -1 0.04 -0.02 0.0 -1.00000 VXY LHC____TCP_____E6L7G -0.16854 5.13067 0.28748 -1 -0.03 0.02 0.0 -1.00000 VXY LHC____TCP_____E6L7F -0.27414 5.33040 0.28784 -1 -0.21 -0.00 0.0 -1.00000 VXY LHC____TCP_____E6L7C -0.36409 5.33016 0.28809 -1 -0.16 -0.01 0.0 -1.00000 VXY LHC____MQWA____B6L7E -0.09897 3.44002 0.54708 -1 0.00 0.00 0.0 -1.00000 VXY LHC____GISP_____6L7_ 0.54885 -0.00020 0.70000 -1 -1.15 -0.20 0.0 -1.00000 VXY LHC____GISP_____4L7_ 0.55471 33.41672 0.66808 -1 4.71 -0.15 0.0 -1.00000 VXY
Test conclusion • System repeatability is below 0.1mm • Comparison to theory contains the uncertainty of the LTD measurements and the mechanical precision of the exchanged targets. • Precision is 0.2mm and already within specs but some optimisation margin can still be used
TIM Security • Some security issues to adress • Some known issues from Tim 30*30 • TIM security rules with personell in place • Access restricted to team members • Airflow must be minimized (extraction point of sector 6-7 and 7-8) • Working on more advanced mobile control panel
Status • Sensorsystems are running • All Subroutines are running • Calculation routines beeing finalized • Tunnelinstallation IR 7 completed • 5 overlapping wires • 10 pillars • 2x 111 m, 2x 85 m,1x 146 m • 350 Optical targets in place and measured • IR 3 in preparation
To do list • Finalising Hardware configuration • Housing, wireing • Transfer from PC to PXI • More powerful and less consuming • Adding Mobile Control Panel • Tests for full system validation ongoing • Ready for winter stop 2011/2012 • Preparation for IR 3 Installation in long shutdown
Planning • 09/11 Hardware finished Programm transferred to PXI • 10/11 Full validation in mock-up Including all possible configurations • 11/11 Documentation and Procedures (Installation, Calibration, Operation, RP, Safety) • 01/12 Installation and measurements in IR7 for 3 days (night shift) Manual measurements of LSS 7 Continious optimisation and developments with core team (C. Charrondiere, T. Feniet, P. Bestmann) and assignment of alternate specialists.