clic ild vertex detector modules and s tave layout n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
CLIC_ILD vertex detector modules and s tave Layout PowerPoint Presentation
Download Presentation
CLIC_ILD vertex detector modules and s tave Layout

Loading in 2 Seconds...

play fullscreen
1 / 41

CLIC_ILD vertex detector modules and s tave Layout - PowerPoint PPT Presentation


  • 120 Views
  • Uploaded on

CLIC_ILD vertex detector modules and s tave Layout. Mathieu Benoit . Introduction. A more detailed description of the vertex detector layout is needed to drive the R&D ongoing on : Sensor and modules Cooling studies Signal and power distribution Mechanical support

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'CLIC_ILD vertex detector modules and s tave Layout' - ginger


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
clic ild vertex detector modules and s tave layout

CLIC_ILD vertex detector modules and staveLayout

Mathieu Benoit

mini workshop on engineering aspects of the CLIC vertex detectors

introduction
Introduction
  • A more detailed description of the vertex detector layoutisneeded to drive the R&D ongoing on :
    • Sensor and modules
    • Coolingstudies
    • Signal and power distribution
    • Mechanical support
  • Module dimensions are driven by Front-End and Sensor production capabilities
    • Chip has a maximum die size (2.2 x 2.2cm2)
    • Sensor has maximum length
  • Stavelayoutisdriven by :
    • Need for hermeticity
    • Module size
    • Occupancy in the layers (fixed radius)
    • Lorentz angle
    • Material budget

mini workshop on engineering aspects of the CLIC vertex detectors

module layout
Module layout

mini workshop on engineering aspects of the CLIC vertex detectors

module layout1
Module Layout
  • Module dimensions are constrained by the size of the front-end
    • We suppose 512x512 pixel Timepix-like chips
    • 20x20 um pixel pitch
    • Modules per ladder must be an oddnumber (middle of a module at Z=IP)
    • Following CLIC_ILD CDR simulation layout, LadderLength = 26.0 cm
      • L=NbChip*(pitch) + (NbChip -1)*ChipGap + 2*GR
      • 5x(1.024)+4*0,005+2*0.001= 5.160 cm
      • 5x5.16cm = 25.8cm

6’’ Wafer, divided in squares of 1.029 x 1.029 cm2

mini workshop on engineering aspects of the CLIC vertex detectors

module layout 2
Module Layout (2)

Physics and Detectors CDR ,Lucie LINSSEN, Akiya MIYAMOTO, Marcel STANITZKI, Harry WEERTS

Wetry to stay as close as possible to the CLIC_ILD CDR layout, whith 2 different type of modules, for layer 1+2, and layer 3+4+5+6, locatedatfixed radius

mini workshop on engineering aspects of the CLIC vertex detectors

module layout 3
Module Layout (3)

mini workshop on engineering aspects of the CLIC vertex detectors

module layout 4
Module Layout (4)

45x45 um pixels at the corners

  • Inter-Chip regions
  • 20x45um pixel between set of 2 chips

mini workshop on engineering aspects of the CLIC vertex detectors

module layout 5
Module Layout (5)
  • Interconnectionbetween chips wouldmake use of the TSV technology to bringread-out and power pads to the backside of the chip
  • DC/DC Converterstoragecapacitorcanbedistributed on the back of the chip on the Redistribution Layer (RDL)

Bonding

FE

FE

RDL

TSV

Pads

sensor

beam

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout
Barrel layout

mini workshop on engineering aspects of the CLIC vertex detectors

barrels layout
Barrels layout

The CLIC ILD CDR Geometry for the CDR Monte Carlo Mass Production, A. Munnich, A. Sailer

CDR layout has been selectedtakingintoaccountslightlywider module thanwhatisproposedhere. Weneed to modifyslightly the radius to keephermeticity, number of ladders (set of modules)

Not mentionnedhereis the tilt angle of the modules with regard to the vertex radius, usually set by lorentz angle

mini workshop on engineering aspects of the CLIC vertex detectors

lorentz angle
Lorentz angle
  • It is a usual practice in vertex design to tilt modules with regard to the particle direction to account for Lorentz angle and minimize cluster size

Reco hit

E

Holes

Electrons

Drift

B= 5T

mini workshop on engineering aspects of the CLIC vertex detectors

lorentz angle1
Lorentz angle

Reco hit

E

B= 5T

Holes

Electrons

Drift

mini workshop on engineering aspects of the CLIC vertex detectors

lorentz angle in clic ild
Lorentz angle in CLIC_ILD
  • Lorentz angle depends on mobilitywhichdepends on Electric field and eventually on dopant concentration
  • In a 50um 10kOhmcm p-type wafer, 10V bias, E≈[1600,2700]V/cm
    • Varywithresistivity, bias voltage
  • In a planarsensor, E isproportional to V applied
    • V appliedisproportional to thickness2 (Full depletion voltage)
    • For thinsensor, at full depletion voltage, Electric fieldisverylow
    • To beinvestigated : How much over Full depletioncanweapply voltage

mini workshop on engineering aspects of the CLIC vertex detectors

lorentz angle in clic ild1
Lorentz angle in CLIC_ILD

80V (?)

10V

mini workshop on engineering aspects of the CLIC vertex detectors

lorentz angle in clic ild2
Lorentz angle in CLIC_ILD

10V

80V (?)

mini workshop on engineering aspects of the CLIC vertex detectors

lorentz angle in clic ild summary
Lorentz angle in CLIC_ILD (summary)
  • Following the sensorspecification, lorentz angle willbe large in CLIC_ILD
  • It is not possible to specifyatthis point veryprecisely the characteristics of the sensor to beused
    • Unknownresistivity, thickness
    • Possible operation voltage
  • Best strategyis to deal withthisat the hit reconstruction level, by takingintoaccountmeasured angle (cosmics ? Runs w/o B Field?)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer 1 2
Barrel layout(layer 1+2)
  • CLIC_ILD MC Model Layer 1+2 are octodecagons (18)
    • Radius = 31.0, 32.87 mm
    • Length = 260 mm (25 chips + 2 mm tolerance)
    • Width (ladder) = 11.5 mm (all considered active)
  • Real Module and Layer (assuming 5x1 modules)
    • Radius = ??
    • Length 258 mm (5x 5x1 chip modules)
    • Width (ladder) = 10.44 mm (10,24 mm active)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer 1 21
Barrel layout (layer 1+2)
  • To ensurehermeticity, layer 1+2 need to beplacedcloser to IP than MC model
    • Option 1:
      • Radius(layer 1) = 29 mm (31mm before)
      • Radius(layer 2) =30.87mm (32.87mm before)
      • To avoid volume overlap, slightly tilt the ladders (here1.5°)
    • Option 2:
      • Tilt sensors by lorentz angle (ex: 15 deg)
      • Add 1-2 ladders (here , 2-> Icosagon !)
      • Move back to larger radius (here31.221 mm)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer1 2 option 1
Barrel layout (layer1+2, option 1)

Single hits

Double layer, holding on the samemechanical structure not shownhere

An option to option 1: Shifting layer 2 vs layer 1 (here 1mm), ladder per ladder to avoidoverlapping gaps

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer1 2 option 2
Barrel layout (layer1+2, option 2)

Single hits

In this option wemaintain the larger radius, but increaseoverlap, further optimisation isneeded

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer 3 4
Barrel layout(layer 3+4)
  • CLIC_ILD MC Model Layer 3+4 are tridecagons (13)
    • Radius = 44.0, 45.87 mm
    • Length = 260 mm (25 chips + 2 mm tolerance)
    • Width (ladder) = 22.5 mm (all considered active)
  • Real Module and Layer (assuming 5x2 modules)
    • Radius = ??
    • Length 258 mm (5x 5x2 chip modules)
    • Width (ladder) = 20.73 mm (20.53 mm active)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer 3 41
Barrel layout (layer 3+4)
  • To ensurehermeticity, layer 3+4 need to beplacedcloser to IP than MC model
    • Option 1:
      • Radius(layer 1) = 41.65 mm (44 mm before)
      • Radius(layer 2) = 43.516 mm (45.87 mm before)
      • To avoid volume overlap, slightly tilt the ladders(here1.5°)
    • Option 2:
      • Tilt sensors by lorentz angle (ex: 15 deg)
      • Add 1-2 ladders (here , 2-> pentadecagon !)
      • Move back to larger radius (here45.647 mm)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer3 4 option 1
Barrel layout (layer3+4, option 1)

Single hits

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer3 4 option 2
Barrel layout (layer3+4, option 2)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer 5 6
Barrel layout(layer 5+6)
  • CLIC_ILD MC Model Layer 3+4 are heptadecagons (17)
    • Radius = 58.0, 59.87 mm
    • Length = 260 mm (25 chips + 2 mm tolerance)
    • Width (ladder) = 22.5 mm (all considered active)
  • Real Module and Layer (assuming 5x2 modules)
    • Radius = ??
    • Length 258 mm (5x 5x2 chip modules)
    • Width (ladder) = 20.73 mm (20.53 mm active)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer 5 61
Barrel layout (layer 5+6)
  • To ensurehermeticity, layer 5+6 need to beplacedcloser to IP than MC model
    • Option 1:
      • Radius(layer 1) = 54.91 mm (58 mm before)
      • Radius(layer 2) = 56.782mm (59.87 mm before)
      • To avoid volume overlap, slightly tilt the ladders(here1.5°)
    • Option 2:
      • Tilt sensors by lorentz angle (ex: 15 deg)
      • Add 1-2 ladders (here , 2-> enneadecagon !)
      • Move back to larger radius (here58.418 mm)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer 5 6 option 1
Barrel layout (layer 5+6, option 1)

mini workshop on engineering aspects of the CLIC vertex detectors

barrel layout layer 5 6 option 2
Barrel layout (layer 5+6, option 2)

mini workshop on engineering aspects of the CLIC vertex detectors

full barrel option 1
Full Barrel (option 1)

mini workshop on engineering aspects of the CLIC vertex detectors

full barrel option 2
Full Barrel (option 2)

mini workshop on engineering aspects of the CLIC vertex detectors

full barrel option 3
Full Barrel (option 3)
  • SiDlike design
  • Symmetriclayout
  • Unregular hit distance to IP

mini workshop on engineering aspects of the CLIC vertex detectors

disk layout
Disklayout

mini workshop on engineering aspects of the CLIC vertex detectors

disk layout1
Disklayout

The CLIC ILD CDR Geometry for the CDR Monte Carlo Mass Production, A. Munnich, A. Sailer

Wheels in CLIC_ILD CDR layoutconsist of 3 identical double-layers

mini workshop on engineering aspects of the CLIC vertex detectors

wheel layout 2
Wheel layout (2)
  • The wheel active area spansfromR=33 to R=102mm H=69 mm in CLIC_ILD CDR layout
  • To use module like building block, the best option is 6x2 modules
    • H=61.89 mm < CDR layout
    • Dimension couldbeadjusted a bit making use of elongated pixels

mini workshop on engineering aspects of the CLIC vertex detectors

wheel layout the quadrature of the circle option 1
Wheel layout, the quadrature of the circle (option 1)
  • Module basedlayout
    • 15 modules per layer, 30 for a double layer
    • Each module tilted by 24° with regard to previous layer
    • Each layer tilted by 12° with regard to other part of double layers
    • Each module tilted by 2° with regard to radius to allowoverlap
    • Possibility to distribute modules along Z to reproduce the helicoidal structure favored for cooling

mini workshop on engineering aspects of the CLIC vertex detectors

wheel layout the quadrature of the circle option 11
Wheel layout, the quadrature of the circle (option 1)

mini workshop on engineering aspects of the CLIC vertex detectors

wheel layout the quadrature of the circle option 12
Wheel layout, the quadrature of the circle (option 1)

mini workshop on engineering aspects of the CLIC vertex detectors

wheel layout option 2
Wheel Layout (option 2)

Source : http://www.micronsemiconductor.co.uk/pdf/cat.pdf

mini workshop on engineering aspects of the CLIC vertex detectors

conclusion
Conclusion
  • A set of specifications for the modules driven by the acheivable Front-end and sensor die size has been established
    • Inactive regionmust betakenintoaccount in the layout of the ladders, barrel and disks
    • Hermeticity of the double layer must beminimized
    • Lorentz angle in the sensorshouldbetakenintoaccount in the layout of the barrel
    • Possibility of cableless power distribution and readoutshouldbeexplored
      • Stitchingbetween Front-End and between modules (TSV,RDL)
      • Integration of components (capacitor, resistance) on Front-End backside
  • Disklayoutrepresent a challenge in terms of material budget, hermeticity and mechanical support
    • Radial distribution of modules (option 1) is far from the ideal in terms of hermeticity and material budget
    • Disklike modules couldbe a solution (one module per wafer, assemblychallenging)

mini workshop on engineering aspects of the CLIC vertex detectors