1 / 16

纳米生物技术

纳米生物技术. 生态学 丁文娟. 什么是纳米. “ 纳米”是英文 namometer 的译名,是一种长度单位, 1 纳米为百万分之一毫米,即 1 毫微米,也就是十亿分之一米,一纳米大约是三四个原子的宽度,相当于我们头发丝的万分之一。. 什么是纳米技术.

gil-levine
Download Presentation

纳米生物技术

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 纳米生物技术 生态学 丁文娟

  2. 什么是纳米 “纳米”是英文namometer的译名,是一种长度单位,1纳米为百万分之一毫米,即1毫微米,也就是十亿分之一米,一纳米大约是三四个原子的宽度,相当于我们头发丝的万分之一。

  3. 什么是纳米技术 纳米技术(nanotechnology)是20世纪90年代出现的一门新兴技术。是在0.10~100 nm尺度的空间内,研究电子、原子和分子运动规律和特性的崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。

  4. 纳米技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,纳米技术被认为是世纪之交出现的一项高科技。它是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。纳米技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,纳米技术被认为是世纪之交出现的一项高科技。它是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。

  5. 纳米生物材料 生物材料已是大家熟知的内容,例如:用于制衣、皮带的动物皮革是生物材料;用于镶牙和制作隐形眼睛的材料,尽管不是生物制品,但是被用于生物体内,也可以归于生物材料。

  6. 纳米生物材料也可以分为两类,一种是适合于生物体内应用的纳米材料,它本身即可以是具有生物活性的,也可以不具有生物活性,而仅仅易于被生物体接受,而不引起不良反应。另一类是利用生物分子的特性而发展的新型纳米材料,它们可能不再被用于生物体,而被用于其它纳米技术或微制造。纳米生物材料也可以分为两类,一种是适合于生物体内应用的纳米材料,它本身即可以是具有生物活性的,也可以不具有生物活性,而仅仅易于被生物体接受,而不引起不良反应。另一类是利用生物分子的特性而发展的新型纳米材料,它们可能不再被用于生物体,而被用于其它纳米技术或微制造。

  7. 活的电线 在很多方面,DNA几乎是构筑纳米尺度结构的理想材料。近来,科学家通过在DNA的表面覆盖金属原子的培植方法,合成了导电的DNA链。然而,由于DNA完全被金属覆盖,仅起一种支架的作用,不再具备选择性结合其它生物分子这一很有价值的特性。

  8. Saskatchewan大学的研究者逐渐发现了将DNA发展成新一代生物传感器和半导体导线的途径。生物化学教授Jeremy Lee实验室的研究者发现DNA很容易把锌、镍、钴等离子并入它的双螺旋的中心,并找到了在高pH值等基本条件下,稳定DNA含有金属离子的状态,获得了新的DNA导电体。并且,此类金属DNA仍然保持选择性结合其它分子的能力。正在开发的应用之一是遗传畸变探测生物传感器。类似于其它的DNA探测,在此传感器上装配上所要探测的特制DNA序列。在此,DNA链是导电的。杂交DNA所引起的删除或变化,均起阻碍电流的作用,计算机能够简单地通过测量电导的变化,来识别DNA的异常。

  9. 这种生物传感器还能用于鉴别混合物,如:环境毒素、毒品、或蛋白质等,当这类分子结合到金属DNA上,将把金属离子排斥出来,导致电流中断。由于,信号强度的减小正比于污染物的浓度,所以,能够很容易地确定环境毒素的量。金属DNA还可以用于筛选结合于DNA的抗肿瘤药物,用作微细半导体线路的导线等。

  10. 给肿瘤贴标签的纳米生物传感器 将荧光素(荧光蛋白)结合靶向因子,通过与肿瘤表面的靶标识别器结合后,在体外用测试仪器显影可确定肿瘤的大小尺寸和体位。另一个重要的方法是将纳米磁性颗粒与靶向性因子结合,与肿瘤表面的靶标识别器结合后,在体外用仪器测定磁性颗粒在体内的分布和位置,确定肿瘤的大小尺寸和体位。

  11. 美国科学家研制出一种纳米探针,它是一支直径50纳米,外面包银的光纤,并可传导一束氦—镉激光。它的尖部贴有可识别和结合BPT的单克隆抗体。325纳米波长的激光将激发抗体和BPT所形成的分子复合物产生荧光。此荧光进入探针光纤后,由光探测器接收。Tuan Vo-Dinh和他的同事认为,此高选择和高灵敏的纳米传感器能用于探测很多细胞化学物质,可以监控活细胞的蛋白质和其它所感兴趣的生物化学物质。

  12. 让药物瞄准病变部位的“纳米导弹” 从1994年开始,中南大学卫生部肝胆肠外科研究中心张阳德等(中国现代医学杂志2001;11(3):1-14)开展了磁纳米粒治疗肝癌研究,我们的研究内容包括磁性阿霉素白蛋白纳米粒在正常肝的磁靶向性、在大鼠体内的分布及对大鼠移植性肝癌的治疗效果等。结果表明,磁性阿霉素白蛋白纳米粒具有高效磁靶向性,在大鼠移植肝肿瘤中的聚集明显增加,而且对移植性肿瘤有很好的疗效。

  13. 靶向技术的研究主要在物理化学导向和生物导向两个层次上进行。靶向技术的研究主要在物理化学导向和生物导向两个层次上进行。 物理化学导向———利用药物载体的pH敏、热敏、磁性等特点在外部环境的作用下(如外加磁场)对肿瘤组织实行靶向给药。磁性纳米载体在生物体的靶向性是利用外加磁场,使磁性纳米粒在病变部位富集,减小正常组织的药物暴露,降低毒副作用,提高药物的疗效。磁性靶向纳米药物载体主要用于恶性肿瘤、心血管病、脑血栓、冠心病、肺气肿等疾病的治疗。

  14. 生物导向———利用抗体、细胞膜表面受体或特定基因片段的专一性作用,将配位子结合在载体上,与目标细胞表面的抗原性识别器发生特异性结合,使药物能够准确送到肿瘤细胞中。药物(特别是抗癌药物)的靶向释放面临网状内皮系统(RES)对其非选择性清除的问题。再者,多数药物为疏水性,它们与纳米颗粒载体偶联时,可能产生沉淀,利用高分子聚合物凝胶成为药物载体可望解决此类问题。因凝胶可高度水合,如合成时对其尺寸达到纳米级,可用于增强对癌细胞的通透和保留效应。生物导向———利用抗体、细胞膜表面受体或特定基因片段的专一性作用,将配位子结合在载体上,与目标细胞表面的抗原性识别器发生特异性结合,使药物能够准确送到肿瘤细胞中。药物(特别是抗癌药物)的靶向释放面临网状内皮系统(RES)对其非选择性清除的问题。再者,多数药物为疏水性,它们与纳米颗粒载体偶联时,可能产生沉淀,利用高分子聚合物凝胶成为药物载体可望解决此类问题。因凝胶可高度水合,如合成时对其尺寸达到纳米级,可用于增强对癌细胞的通透和保留效应。

  15. 目前,虽然许多蛋白质类、酶类抗体能够在实验室中合成,但是更好的、特异性更强的靶向物质还有待于研究与开发。而且药物载体与靶向物质的结合方式也有待于研究。

  16. The end! Thank you!

More Related