Las ecuaciones cuadráticas en nuestro entorno son más comunes de lo que imaginamos
Download
1 / 19

- PowerPoint PPT Presentation


  • 161 Views
  • Uploaded on

Las ecuaciones cuadráticas en nuestro entorno son más comunes de lo que imaginamos. Gráfica de una ecuación cuadrática. Objetivo: Identificar los elementos que determinan la posición de la gráfica de una ecuación cuadrática. y = x 2. ¿Signo del término cuadrático?. ¿Cruce con el eje “Y”?.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about '' - gerd


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

Las ecuaciones cuadráticas en nuestro entorno son más comunes de lo que imaginamos

Gráfica de una ecuación cuadrática


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

Objetivo: comunes de lo que imaginamos

Identificar los elementos que determinan la posición de la gráfica de una ecuación cuadrática.


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = x comunes de lo que imaginamos2

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más bajo de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = -x comunes de lo que imaginamos2

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más alto de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = x comunes de lo que imaginamos2+2

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más bajo de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = -x comunes de lo que imaginamos2+2

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más alto de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = x comunes de lo que imaginamos2 - 6

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más bajo de la curva?

¿Qué elemento desplazó la curva sobre el eje “y”?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = 3x comunes de lo que imaginamos2 - 6

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más bajo de la curva?

¿Qué elemento determina el grado de abertura de una curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = x comunes de lo que imaginamos2 - 6x + 9

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más bajo de la curva?

¿Qué elemento desplazó la curva sobre el eje “x”?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = -x comunes de lo que imaginamos2 + 6x - 9

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más alto de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = x comunes de lo que imaginamos2 - 6x + 10

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más bajo de la curva?

¿Qué elemento separó la curva de los ejes “x” y “y”?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = -x comunes de lo que imaginamos2 - 6x - 10

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más alto de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = x comunes de lo que imaginamos2 + 2x - 3

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más bajo de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = -x comunes de lo que imaginamos2 + 6x - 5

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más alto de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

y = 2x comunes de lo que imaginamos2 - 4x - 6

¿Signo del término cuadrático?

¿Cruce con el eje “Y”?

¿Punto más bajo de la curva?


Las ecuaciones cuadr ticas en nuestro entorno son m s comunes de lo que imaginamos

GRACIAS comunes de lo que imaginamos