oli mse data regression l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
OLI-MSE Data Regression PowerPoint Presentation
Download Presentation
OLI-MSE Data Regression

Loading in 2 Seconds...

play fullscreen
1 / 56

OLI-MSE Data Regression - PowerPoint PPT Presentation


  • 115 Views
  • Uploaded on

OLI-MSE Data Regression. Additional course materials can be found at: http://support.olisystems.com/ MSE fundamentals: P. Wang, A. Anderko, R. D. Young; Fluid Phase Equilbria , 2002, 203, 141-176 P. Wang, R. D. Spinger, A. Anderko, R. D. Young; Fluid Phase Equilbria , 2004, 222-223, 11-17

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'OLI-MSE Data Regression' - gerald


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
oli mse data regression
OLI-MSE Data Regression

Additional course materials can be found at:

http://support.olisystems.com/

MSE fundamentals:

P. Wang, A. Anderko, R. D. Young; Fluid Phase Equilbria, 2002, 203, 141-176

P. Wang, R. D. Spinger, A. Anderko, R. D. Young; Fluid Phase Equilbria, 2004, 222-223, 11-17

P. Wang, A. Anderko, R. D. Spinger, R. D. Young; Journal of Molecular Liquids, 2006, 125,37-44

oli mse data regression2
OLI-MSE Data Regression

Objectives

  • To create new model parameters
  • To obtain improved model parameters
  • To reevaluate model parameters using new or proprietary data
  • To accurately reproduce experimental results
oli mse data regression3
OLI-MSE Data Regression

Steps

  • Collecting relevant literature data
  • Customizing chemistry model
  • Preparing regression input file
  • Running the regression
  • Reviewing regression output
types of thermophysical data used in mse regression
Types of thermophysical data used in MSE regression
  • Water activity or osmotic coefficients
  • Vapor pressure (VLE)
  • Solubility (SLE)
  • Solubility (LLE)
  • Speciation (pH, dissociation degree, etc)
  • Density
  • Enthalpy (Hdiland Hmix)
  • Heat capacity
model parameters
Model Parameters

Chemical & phase

equilibriumModel Parameters

calculations require

Standard state properties Gref, Sref, Cp, and

HKF parameters

Excess properties Activity coefficient

model parameters

mse model excess gibbs energy
MSE Model: Excess Gibbs Energy

LR Debye-Hückel theory

LC Local composition model (UNIQUAC) for neutral molecule interactions

MR Ionic interaction term for ion-ion and ion-molecule interactions

mse model long range electrostatic interaction debye h ckel term
MSE Model:Long-range electrostatic interaction (Debye-Hückel) term

A function of ionic strength and solvent properties

No interaction parameters

slide8

MSE Model:Neutral molecule interaction term – Local composition model (UNIQUAC)

  • Parameters -
  • Species specific: R (size) and Q (surface area)
  • Interaction:aijandaji
slide9

MSE Model:Ionic interaction (Middle-Range) term

Interaction Parameters -

bijandcij

mse databank msepub
MSE Databank: MSEPUB
  • Equivalent to PUBLIC for OLI/Aqueous framework
  • H3OION-based databank
    • reactions are balanced using H3OION and H2O instead of using HION and H2O
mse databank msepub data items specifically used by mse model in aqueous phase chapter
MSE Databank: MSEPUBData items specifically used by MSE modelIn “Aqueous Phase” chapter

Pure Liquid Properties (for organic molecules)

  • LDEN – Coefficients for pure liquid molar density
  • CP – Heat capacity parameters for pure liquid
  • DIE0– Coefficients for pure liquid dielectric const.
mse databank msepub data items specifically used by mse model in aqueous phase chapter12
MSE Databank: MSEPUBData items specifically used by MSE model- In “Aqueous Phase” chapter

Other data items:

  • R_UQ, Q_UQ

UNIQUAC size (R) and surface (Q) parameters well-defined group values (Reid et al. 1987)

  • SOLU (Two values are given)

solubility of a species (usually organic component) in water and solubility of water in organic.

mse databank msepub interactions pertaining to mse model in interaction chapter
MSE Databank: MSEPUBInteractions pertaining to MSE model – In “Interaction” chapter
  • UNIQ – UNIQUAC parameters (primarily for neutral-neutral interactions)

Q0IJ Q1IJ Q2IJ Q3IJ Q4IJ

Q0JI Q1JI Q2JI Q3JI Q4JI

For most systems, Q3IJ, Q4IJ,

Q3JI, and Q4JI are set to zero

mse databank msepub interactions pertaining to mse model in interaction chapter14
MSE Databank: MSEPUBInteractions pertaining to MSE model – In “Interaction” chapter

MIDRANGE – Middle-range parameters (primarily for neutral-ion and ion-ion; can be used for neutral-neutral)

BMD0 BMD1 BMD2 BMD3 BMD4

CMD0 CMD1 CMD2 CMD3 CMD4

mse databank msepub interactions pertaining to mse model in interaction chapter15
MSE Databank: MSEPUBInteractions pertaining to MSE model – In “Interaction” chapter

DENUNIQ – UNIQUAC density parameters

D0IJ D1IJ D2IJ

D0JI D1JI D2JI

mse databank msepub interactions pertaining to mse model in interaction chapter16
MSE Databank: MSEPUBInteractions pertaining to MSE model – In “Interaction” chapter

DENMID – Middle-range density parameters

DMD1 DMD2 DMD3 DMD4 DMD5

DMD6 DMD7 DMD8 DMD9 DMD0

regression adjustable parameters

Regression Adjustable Parameters

Excess Properties

  • UNIQUAC parameters–

Q0IJ Q1IJ Q2IJ Q3IJ Q4IJ

Q0JI Q1JI Q2JI Q3JI Q4JI

  • Middle-range parameters–

BMD0 BMD1 BMD2 BMD3 BMD4

CMD0 CMD1 CMD2 CMD3 CMD4

  • UNIQUAC density parameters –

D0IJ D0JI D1IJ D1JI D2IJ D2JI

  • Middle-range density parameters–

DMD1 DMD2 DMD3 DMD4 DMD5

DMD6 DMD7 DMD8 DMD9 DMD0

regression adjustable parameters18

Regression Adjustable Parameters

Standard state Gibbs energy and entropy

(appear in the databank as GREF and SREF)

  • GRFS – std. state Gibbs energy for solid
  • SRFS – std. state entropy for solid
  • GREF – std. state Gibbs energy for aqueous species
  • SREF – std. state entropy for aqueous species
  • GRFV – std. state Gibbs energy for vapor species
  • SRFV – std. state entropy for vapor species
regression adjustable parameters19

Regression Adjustable Parameters

Standard state heat capacities

  • CPS1, CPS2, CPS3, CPS4, CPS5 – heat capacity equation parameters for solid species

HKF EOS parameters (aqueous species)

  • HA1HA2HA3HA4 (P dependency)
  • HC1HC2HW (T dependency)
regression adjustable parameters20

Regression Adjustable Parameters

Coefficients for equilibrium constant K: A, B, C, Dcan be adjusted as needed

oli mse data regression21
OLI-MSE Data Regression

Steps

  • Collecting relevant literature data
  • Customizing chemistry model
    • Create a private databank, if necessary, with species of interest; create new species if not in DB
    • Set up chemistry model using OLI/Express or ESP Process, with the private databank
    • Define variables using OLI internal variables, if necessary, in the -.mod file
create a private databank
Create a Private Databank
  • Changes can be made to a private databank without affecting MSEPUB (the public MSE databank)
  • Parameters developed may be based on proprietary data and are not going to be in public domain
  • How to create a private databank
set up a chemistry model
Set up a chemistry model
  • Change “current directory” to your working directory
  • Using OLI Express or OLI/ESP
  • Include the private databank
  • Select Mix-Solvent H3OION-based framework
  • Define variables using OLI internal variables, if necessary, in the -.mod file
list of some commonly used oli internal variables
List of Some Commonly Used OLI Internal Variables

Variable name Description Default units

T temperature Kelvin

PT pressure atmospheres

PH pH

-IN inflows moles

-AQ, -ION mole-frac in soln

H2O mole-frac of H2O

L-AQ, L-ION ln (mole-frac in soln)

LH2O ln (mole-frac of H2O)

-PPT, -.nH2O precipitates and hydrates moles

Y- vapor mole-fractions

X-O 2nd liquid phase mole-frac

V total vapor moles moles

A-AQ, A-ION ln (activity coef, x)

AH2O ln (activity coef. of H2O,x)

K- ln (equilibrium K-values)

DENMAS density of solution g/L

comparison of variables in oli mse and oli aqueous framework
Comparison of Variables in OLI/MSE and OLI/Aqueous Framework

Aqueous

Concentration Units (V6.7 or older)

molality (mol/kg H2O); e.g.

SO4ION=m(SO4-2)

HSO4ION=m(HSO4-)

H2SO4AQ=m(H2SO4-aq)

H2O=55.5084 for all systems

Water activity

AH2O=ln awater

DEFINE AWATER=EXP(AH2O)

MSE

Concentration Units

mole-fraction; e.g.

SO4ION=x(SO4-2)

HSO4ION=x(HSO4-)

H2SO4AQ=x(H2SO4-aq)

H2O=x(H2O)

Water activity

AH2O=ln γwater

DEFINE AWATER=EXP(AH2O+LH2O)

where LH2O=ln(xwater)

comparison of variables in oli mse and oli aqueous framework26
Comparison of Variables in OLI/MSE and OLI/Aqueous Framework

Aqueous

Activity coefficients

AKION=ln γK+m,∞

Mean activity coefficient:

DEFINE GAMMA=

EXP((AKION+ACLION)/2.0)

MSE

Activity coefficients

AKION=ln γK+x,∞

γK+m,∞= xw•γK+x,∞

Mean activity coefficient:

DEFINE GAMMA=

EXP(LH2O+(AKION+ACLION)/2.0)

Based on (for 1:1 electrolyte):

ln ±,m= ½ • (ln K+,m+ ln Cl-,m)

comparison of variables in oli mse and oli aqueous framework27
Comparison of Variables in OLI/MSE and OLI/Aqueous Framework

Aqueous

Equilibirum Constant

KMXAQ=ln KMX∞,m

MSE

Equilibirum Constant

KMXAQ=ln KMX∞,x

where ∆n is the change in number of moles in reaction (∆n=1 for MXAQ=MION+XION).

oli mse data regression28
OLI-MSE Data Regression

Steps

  • Collecting relevant literature data
  • Customizing chemistry model
  • Preparing regression input file
regression input
Regression Input

Input file (-.inr) structure:

$TITLE

A line containing characters to explain the file

$CONTROL

Has several options

$PARAMETERS

The heart of the regression

$DATA SET X

Has a global parameter section and data section;

An input file can have a number of data sets.

regression input file inr
Regression Input File (-.inr)

$TITLE

A line containing characters to explain the file

$CONTROL

Options are:

MAXIT xx (Maximum number of iterations, default= 50)

QFIT x.x (Convergence tolerance, default= 1.0E-05)

METH x (Regression method)

0 - Brown’s algorithm, Uses MARQ parm

1 - Strict Decent (default)

2 – Semi Strict Decent, Uses MARQ and SCALING)

MARQ x.x (Marquardt scaling parm – METH=1 or 2 default=1.0)

SCALING x.x (Factor for adjusting MARQ – Meth=2 default=1.5)

NUMERICAL (Forces numerical derivative calculation)

TRACE (Produce ElectroChem output at every iteration)

OBJECTIVE x (Change Objective function)

1 - (calc value/exp value – 1) default

2 – (max(calc or exp value)/min(calc or exp value) – 1)

3 – (calc value – exp value)

ERROR xxxxx (Error assign to non-converged points, default=0)

CSV variable-list (specify variables to be printed for each datumin a CSV file)

regression input file inr31
Regression Input File (-.inr)

$PARAMETERS

The heart of the regression

Format:

P01 1.0 1.023E-2 -1 1. KION CLION BMD0

species1 species2

Alias Initial value regression

Lower and upper bound parameter

Active=1.0 (not used, only for place holding)

Not active=0.0

regression input file inr32
Regression Input File (-.inr)

$PARAMETERS

P01 1.0 1.023E-2 -1 1. KION CLION BMD0

………

P05 1.0 -45035.5 -1 1. NAACETPPT GRFS

P06 1.0 38.35 -1 1. NAACETPPT SRFS

species

Alias Initial value regression

Lower and upper bound parameter

Active=1.0 (not used, only for place holding)

Not active=0.0

consistency in standard state properties using elem in input file

Consistency in standard state properties: Using ELEM in input file

Values of ∆Gf0 (GREF), ∆Hf0 (HREF), and S0 (SREF) are related by

This is done using an ELEM statement in input file —

consistency in standard state properties using elem in input file34

Consistency in standard state properties: Using ELEM in input file

Example: if ∆Gf0 and S0 for NAACETPPT (solid sodium acetate) are adjusted in regression,

In input file (at the end of $PARAMETERS section):

ELEM NAACETPPT 1.0 12.26 2.0 1.372 1.0 49.0 1.5 31.21

The formation process and the standard state entropy for each of the elements are

Na(s) + 2 C(s) + O2(g) + 1.5 H2(g) = CH3COONa (s)

12.26 1.372 49.0 31.21 (in cal/mol.K)

Consistent values of ∆Gf0, ∆Hf0, S0 for NAACETPPT

consistency in standard state properties using elem in input file35

Consistency in standard state properties: Using ELEM in input file

Example: NH2CO2ION (carbamate ion)

In input file, write:

ELEM NH2CO2ION 1.0 1.372 0.5 45.77 1.0 49.005 1.5 31.21

The formation reaction of carbamate ion and the standard state entropies are:

C(s) + 0.5 N2(g) + O2(g) + 1.5 H2(g) = NH2CO2-(aq) + H+(aq)

1.372 45.77 49.005 31.21 0.0

Consistent values of ∆Gf0, ∆Hf0 and S0 for NH2CO2ION

regression input file inr36
Regression Input File (-.inr)

$DATA SET X

Global parameter section

TEMPERATURE 100.0 These lines may be

PRESSURE 1.2249 eliminated if values of

H2OIN 0.965 variables are given in

METHANOLIN 0.035 data section

FREE PT PT allowed to be adjusted

FIX V 1.0E-9 # of FREE variables = # of FIX variables

SC_INDEX list of solids allow calculations under super-saturation

Data section

independent variables dependent variables

DATA T METHANOLIN H2OIN : PT YMETHANOL

100 0.035 0.965 1.2249 0.191

100 0.074 0.926 1.4085 0.313

100 0.163 0.837 1.7419 0.496

……………

example nacl h 2 o
Example: NaCl-H2O

Define variables at the end of -.mod file:

……..

EQUATIONS

DEFINE AW=EXP(AH2O+LH2O)

DEFINE PHI=-(AH2O+LH2O)*H2OIN/(2.0*NACLIN)

DEFINE DENGCC=0.001*DENMAS

END

Translation of the 1st

and 2nd DEFINE:

examples in c mse reg
Examples – in c:\MSE-Reg

SystemsFile Names

  • NaCl+H2O NaCl.inr
  • Methanol+H2O Methanol.inr
  • Methanol+H2O+NaCl MWNaCl.inr
  • Sulfamic acid+H2O NH3SO3.inr
  • Phenol+H2O Phenol.inr
  • Benzene+H2O Benzene.inr
  • Benzene+H2O+NaCl BzNaCl.inr
  • MethaneSulfonic Acid+H2O MSA.inr
  • AlCl3+HCl+H2O, AlCl3.inr

AlCl3+NaCl+H2O

  • ZnCl2+HCl+H2O ZnHCl.inr
  • Zn(NO3)2+HNO3+H2O ZnHNO3.inr
example nacl h 2 o39
Example: NaCl-H2O

Set up input file: NACL.INR

$DATA SET 1

SC_INDEX H2OPPT NACLPPT NACL.2H2O

DATA T PT H2OIN NACLIN : PHI AW CP DENGCC

variables need to be defined

……….

$DATA SET 4

SC_INDEX H2OPPT NACLPPT NACL.2H2O

DATA T PT H2OIN NACLIN H2OIN NACLIN : HDILUT

heat of dilution

initial x final x (cal/mol)

This is the fixed format for heat of dilution

example nacl h 2 o40
Example: NaCl-H2O

Two ways to use solubility data in regression:

Saturation concentration as dependent variables:

$DATA SET 10

FREE NACLIN

FIX NACLPPT 1.0E-9

SC_INDEX ALL NACLPPT

DATA T PT H2OIN : NACLIN

25.0 1.0 0.90021 0.09979

50.0 1.0 0.89812 0.10188

.........

Scaling tendency as dependent variables:

$DATA SET 9

SC_INDEX ALL

DATA T PT H2OIN NACLIN : SC_NACLPPT

25.0 1.0 0.90021 0.09979 1.0

50.0 1.0 0.89812 0.10188 1.0

………..

Scaling tendency (SC_solid = IAP/Ksp) must be 1.0 at saturation

heat of mixing dhmix meoh h 2 o and meoh h 2 o nacl
Heat of Mixing (DHMIX):MeOH-H2O and MeOH+H2O+NaCl

Methanol+H2O (methanol.inr)

DATA T PT METHANOLIN H2OIN METHANOLIN H2OIN METHANOLIN H2OIN : DHMIX

25 1 1 0 0 1 0.25 0.75 -210.28

25 1 1 0 0 1 0.3 0.7 -213.96

……….. ∆Hmix

soln 1 (x) soln 2 (x) final mix. (x) (cal/mol)

Methanol+H2O+NaCl (MWNaCl.inr)

DATA

T PT METHANOLIN H2OIN NACLIN METHANOLIN H2OIN NACLIN METHANOLIN H2OIN NACLIN : DHMIX

12.5 1 1 0 0 0 0.9969 0.0031 0.2 0.7975 0.0025 -215.225

12.5 1 1 0 0 0 0.9969 0.0031 0.25 0.7477 0.0023 -226.004

………… ∆Hmix

soln 1 (x) soln 2 (x) final mix. (x) (cal/mol)

  • The order of components in each of the 3 solutions must be the same
example methanol nacl h 2 o
Example:Methanol + NaCl + H2O

Define variables at the end of MWNaCl.mod file:

……..

DEFINE GTRNA=8.3147*T*(ANAION+LOG(32.0424/18.0152)+LOG(0.997/0.7866))

DEFINE GTRCL=8.3147*T*(ACLION+LOG(32.0424/18.0152)+LOG(0.997/0.7866))

DEFINE GTRE=GTRNA+GTRCL

END

Based on

example phenol h 2 o
Example: Phenol-H2O

Set up chemistry model: phenol.mod

Define variables at the end of phenol.mod file:

……..

EQUATIONS

DEFINE PKPA=PT*101.325

END

example phenol h 2 o44
Example: Phenol-H2O

Using LLE data in regression:

  • Activity ratio as dependent variables

DATA T PT C6H5OHIN H2OIN C6H5OHIN H2OIN : LLE_C6H5OHAQ LLE_H2O

25 1 0.0173 0.9827 0.3223 0.6777 1 1

29.6 1 0.0153 0.9847 0.316 0.684 1 1

…….....

equil. x in 1st liq phase equil. x in 2nd liq phase

LLE_C6H5OHAQ=aC6H5OHAQ(1st)/aC6H5OHAQ(2nd)

LLE_H2O=aH2O(1st)/aH2O(2nd)

must be 1.0 at LLE

example phenol h 2 o45
Example: Phenol-H2O

Using LLE data in regression:

  • Equilibrium concentrationsas dependent variables

DATA T PT H2OIN C6H5OHIN : C6H5OHAQ H2O XC6H5OHAQO XH2OO

25 1 4.88928 1.0 0.0173 0.9827 0.3223 0.6777

29.6 1 5.03682 1.0 0.0153 0.9847 0.316 0.684

…….....

initial moles equil. x in equil. x in

in mixture aqueous phase organic phase

other lle cases
Other LLE cases:

Benzene.inr

BzNaCl.inr

other example alcl3 inr
Other Example: AlCl3.inr

Solubility of AlOOH as a function of pH:

$DATA SET 1

SC_INDEX ALL ALOOHPPT

H2OIN 55.509

FREE PT

FIX V 1.0E-12

FREE HCLIN

FIX PH 2.731

FREE ALOOHIN

FIX ALOOHPPT 1.0E-12

DATA T NACLIN PH : ALOOHIN

152.4 0.1 2.614 6.442E-06 ; 2001PBW g-AlOOH

152.4 0.1 2.731 3.707E-06 ; 2001PBW g-AlOOH

…………

other example msa inr
Other Example: MSA.inr

Using additional constraint on invariant points for solubility data regression

…….

$DATA SET 2

SC_INDEX ALL

DATA T PT H2OIN CH4SO3IN : SC_H2OPPT SC_CH4SO3.3H2O WEIGHT

-75 1.0 0.8360 0.164 1.0 1.0 5.0

$DATA SET 3

SC_INDEX ALL

DATA T PT H2OIN CH4SO3IN : SC_CH4SO3.3H2O SC_CH4SO3.1H2O WEIGHT

-54.5 1.0 0.685 0.315 1.0 1.0 5.0

$DATA SET 4

SC_INDEX ALL

DATA T PT H2OIN CH4SO3IN : SC_CH4SO3.1H2O SC_CH4SO3PPT WEIGHT

-15 1.0 0.220 0.780 1.0 1.0 5.0

constrains in regression parameters
Constrains in regression parameters

General Format: Pnn=Pmm x y Pnn=x*Pmm+y

Example: Let P03=P01

P04=2.5*P02

P07=P05+10.0

$PARAMETERS

P01 1 0.1 -1. 1. SPE1 SPE2 BMD0

P02 1 0.001 -1. 1. SPE1 SPE2 BMD1 Examples:

P03 0 0. -1. 1. SPE3SPE4 BMD0 ZnHCl.inr

P04 0 0. -1. 1. SPE3SPE4 BMD1 ZnHNO3.inr

P05 1. 32. -1. 1. SPE5PPT SRFS

P06 1. -40000. -1 1. SPE5PPT GRFS

P07 0 0. -1. 1. SPE5.H2O SRFS

P08 1. -46000. -1 1. SPE5.H2O GRFS

P03=P01

P04=P02 2.5

P07=P05 1.0 10.0

oli mse data regression50
OLI-MSE Data Regression

Steps

  • Collecting relevant literature data
  • Customizing chemistry model
  • Preparing regression input file
  • Running the regression
running the regression using regress exe
Running the regression using REGRESS.EXE
  • Open a DOS window
  • Change to the working directory (e.g. C:\MSE-Reg)

Your private databank (if any), input file (inr), model file (dbs) must be in the working directory

  • Run REGRESS (e.g. located in C:\OLI70\SYS):

C:\MSE-Reg>C:\OLI70\SYS\REGRESS nacl nacl

model inr

name name

oli mse data regression52
OLI-MSE Data Regression

Steps

  • Collecting relevant literature data
  • Customizing chemistry model
  • Preparing regression input file
  • Running the regression
  • Reviewing the regression output
regression output
Regression Output

Files to review:

OUE

CSV – overwritten by results from the next iteration

NRM – overwritten by results from the next iteration

files to review
Files to review:

OUE –

  • Summary of input data
  • Summary of results for each iteration
    • Parameters
    • comparison of cal- and exp- values
    • Overall NORM (=∑(cal-exp)2) and NORM for each data set
  • Complete results from the final iteration:
    • Equilibrium concentrations in the vapor and liquid phases
    • Activity coefficients of all aqueous species
    • Fugacity coefficients of all vapor species
    • Equilibrium constants for all associated species
files to review55
Files to review:

CSV – Lists information at every single data point; Good for making plots

  • Deviations for all dependent variables, as defined by OBJECTIVE (in $CONTROL section)
  • Comparisons for the calculated and measured values for all dependent variables
  • Values of independent variables as input
  • Convergency flag (0=converged, 1=not converged)
  • Phase indicator (e.g. “L1 V”, “L1 L2”, “L1 V S”)
  • All other variables listed in INR file under $CONTROL section with CSV statement
files to review56
Files to review:

NRM –

  • Regression parameters
  • Point-by-point comparison of cal- and exp- values for all dependent variables
  • All other parameters used (but not adjusted) in the calculations

Part of the OUE file: