1 / 15

2.3 等差数列的前 n 项和 ( 2 )

2.3 等差数列的前 n 项和 ( 2 ). 复习回顾. 等差数列的前 n 项和公式 :. 形式 1:. 形式 2:. 性质 4: 若数列 { a n } 与 { b n } 都是等差数列 , 且前 n 项的和分别为 S n 和 T n , 则. (2) 若项数为奇数 2n - 1, 则 S 2n-1 =(2n - 1) a n (a n 为中 间项 ), 此时有 :S 奇 - S 偶 = ,. 等差数列 { a n } 前 n 项和的性质. 性质 1 : S n ,S 2n -S n ,S 3n -S 2n ,… 也为等差数列 , 公差为. n 2 d.

Download Presentation

2.3 等差数列的前 n 项和 ( 2 )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2.3等差数列的前n项和(2)

  2. 复习回顾 等差数列的前n项和公式: 形式1: 形式2:

  3. 性质4:若数列{an}与{bn}都是等差数列,且前n项的和分别为Sn和Tn,则性质4:若数列{an}与{bn}都是等差数列,且前n项的和分别为Sn和Tn,则 (2)若项数为奇数2n-1,则S2n-1=(2n- 1)an (an为中 间项),此时有:S奇-S偶= , 等差数列{an}前n项和的性质 性质1:Sn,S2n-Sn,S3n-S2n,…也为等差数列,公差为 n2d 性质2:(1)若项数为偶数2n,则S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中间两项),此时有:S偶-S奇= , nd an 性质3: 为等差数列.

  4. 等差数列{an}前n项和的性质的应用 做一做: 1.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=( ) A.63 B.45 C.36 D.27 B 2.在等差数列{an}中,已知公差d=1/2,且a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=( ) A.85 B.145 C.110 D.90 A

  5. 故 3、已知等差数列 的前10项之和为140,其中奇数项之和为125 ,求第6项。 解:由已知

  6. 4. 一个等差数列的前12项之和为354,前12项中偶数项与奇数项之比为32:27,求公差。 解一:设首项为a1,公差为d,则

  7. 5. 一个等差数列的前12项之和为354,前12项中偶数项与奇数项之比为32:27,求公差。 解二:由

  8. 6.两等差数列{an} 、{bn}的前n项和分别是Sn和Tn,且 求 和 .

  9. a1+2d=12 12a1+6×11d>0 13a1+13×6d<0 7.设等差数列的前n项和为Sn,已知a3=12,S12>0,S13<0. (1)求公差d的取值范围; (2)指出数列{Sn}中数值最大的项,并说明理由. 解:(1)由已知得

  10. (2) ∵ ∴Sn图象的对称轴为 由(1)知 由上得 即 ∴Sn有最大值. 由于n为正整数,所以当n=6时Sn有最大值.

  11. 8:已知等差数列 中, 求 的值。 解法1: 代入下式得:

  12. 解法2:设

  13. 两式相减得 解法3:由已知

  14. 作业: P46 A组 5. B组 2,4.

  15. 谢谢!

More Related