220 likes | 975 Views
Compound Angles. Higher Maths. Compound Angles. Click on an icon. Trig Equations 1. Ans. Ans. Ans. Exact Values. Trig Equations 2. Sin (A+B), Sin (A-B). Higher trig. questions. Trig Equations 3. Cos (A+B) , Cos (A-B). Using the four formulae. Trigonometric Equations 1.
E N D
Compound Angles Higher Maths
Compound Angles Click on an icon Trig Equations 1 Ans Ans Ans Exact Values Trig Equations 2 Sin (A+B), Sin (A-B) Higher trig. questions Trig Equations 3 Cos (A+B) , Cos (A-B) Using the four formulae
Trigonometric Equations 1 Solve the following equations for 0 < x < 360, x R 1. 2sin 2x + 3cos x = 0 2. 3cos 2x - cos x + 1 = 0 3. 3cos 2x + cos x + 2 = 0 4. 2sin 2x = 3sin x 5. 3cos 2x = 2 + sin x 6. 10cos2 x + sin x - 7 = 0 7. 2cos 2x + cos x - 1 = 0 8. 6cos 2x - 5cos x + 4 = 0 9. 4cos 2x - 2sin x - 1 = 0 10. 5cos 2x + 7sin x + 7 = 0 Solve the following equations for 0 < q < 2 , q R 11. sin 2q - sin q = 0 12. sin 2q + cos q = 0 13. cos 2q + cos q = 0 14. cos 2q + sin q = 0
Trig Equations 1 - Solutions. 1. {90, 229, 270, 311} 2. {48, 120 , 240, 312} 3. {71,120 , 240 , 289} 4. {0, 41 , 180 , 319} 5. {19 , 161 , 210 , 330 } 6. {37, 143, 210, 330} 7. {41, 180, 319} 8. {48, 104, 256, 312} 9. {30, 150, 229, 311} 10. {233, 307} 11. {0, /3 , , 5/3 , 2} 12. { /2 , 7/6 , 3 /2 , 11 /6} 13. { /3, , 5 /3} 14. { /2 , 7/6 , 11/6}
Trig. Equations 2 Use the formula Sin2x = 2sinxcosx , Cos2x = 2cos2x -1 = 1 – 2sin2x to solve the following equations, for 0 < x < 360, x R 1 5sin2x = 7cosx 2 3cos2x – 10cosx + 7 = 0 3 2cos2x + 4sinx + 1 = 0 4 sin2x = sinx 5 cos2x + cosx = 0 6 5cos2x + 11sinx – 8 = 0 7 3sin2x = 5cosx 8 2cos2x – 9cosx – 7 = 0 9 2cos2x – sinx + 1 = 0 10 2sin2x = 3sinx 11 3cos2x – 7cosx + 4 = 0 12 4cos2x + 13sinx – 9 = 0
Trig Equations (2) - Solutions Question Solution 1 { 44°, 90°, 136°, 270°} 2 { 48°, 312°} 3 { 210°, 330°} 4 { 60°, 180°, 300°} 5 { 60°, 180°, 300°} 6 { 30°, 37°, 143°, 150°} 7 { 56°, 90°, 124°, 270°} 8 { 221°, 139°} 9 { 49°, 131°, 270°} 10 { 41°, 180°, 319°} 11 { 80°, 280°} 12 { 39°, 90°, 141°}
Trigonometric equations 3 Solve for 0 360o x 1. 5cos2x + sinx – 2 = 0 2. 3cos2x – 2cosx + 3 = 0 3. 5sin2x = 7cosx 4. cos2x + 4sinx -1 = 0 5. 7sin2x = 13sinx 6. cos2x + sinx – 1 = 0 7. 3cos2x + sinx – 1 = 0 8. 2cos2x + cosx – 3 = 0 9. 3sin2x = sinx 10. 7cos2x -17cosx + 1 = 0 11. cos2x – 8cosx + 1 = 0 12. 4sin2x = 5cosx 13, 8cos2x + 38cosx + 29 = 0 14. 3cos2x – 11sinx – 8 = 0
Trig Equations 3 - Solutions 1. SS = {37,143,210,330} 2. SS = {71,90,270,289} 3. SS = {44,90,136,270} 4. SS = {0,180,360} 5. SS = {0,22,180,338,360} 6. SS = {0,30,150,180,360} 7. SS = {42,138,210,330} 8. SS = {0,360} 9. SS = {0,80,180,280,360} 10. SS = {107,253} 11. SS = {90,270} 12. SS = {39,90,141,270} 13. SS = {151,209} 14. SS = {236,270,304}
Exact Values Worked example 1 By writing 210 as 180 + 30 , find the exact value of sin210 Solution 1 sin210 = sin(180 + 30) = sin180cos30 + cos180 sin30 = 0 . + (-1) . = - Worked example 2 By writing 315 as 360 - 45 , find the exact value of cos315 Solution 2 cos315= cos(360 - 45) = cos360 cos45 + sin360 sin45 = 1 . + 0 . = Continued on next slide
Use the previous ideas to find the exact values of the following 1. sin 1502. cos 2253. sin 240 4. cos 3005. sin 1206. cos 135 7. sin 1358. cos 2109. sin 315
Higher Trigonometry Questions This set of questions would be suitable as revision for pupils who have done the course work on trigonometry. 1. If A is acute and , find the exact values of sin2A and cos2A 2. If A is obtuse and , find the exact values of sin2A and cos2A. , find the exact value of cos (A-B). 3. If A and B are acute and 4. If A is acute and , find the exact value of cos2A. Continued on next slide
5sin2x = 7cosx • 5cos2x – 7cosx + 6 = 0 • 4cos2x – 10sinx -7 = 0 • 4sin2x = 3sinx • 8cos2x – 2cosx + 3 = 0 • 3cos2x + 7sinx – 5 = 0 • 6sin2x = 11sinx 5. Solve the equations for 6. Solve for a) b) 2sin2x +sinx = 0 c) cos2x – 4cosx = 5 Continued on next slide
7. Find the exact value of sin45 + sin135 + sin225 8. Show that • Show that sin(x+30) – cos(x+60) = 3sinx • 10. Show that sin(x+60) – sin(x+120) = sinx 11. Prove that 12. Prove that (sinx + cosx)2 = 1 + sin2x 13. Prove that sin3xcosx + cos3xsinx = sin2x • 14. By writing 3x as 2x + x show that • sin3x = 3sinx – 4sin3x • cos3x = 4cos3x – 3cosx Continued on next slide
15. Using the fact that , show that • Prove that (cosx + cosy)2 + (sinx + siny)2 = 2[1+cos(x+y)] • 17. Work out the exact values of a) cos330 b) sin210 c) sin135 19. If sinx= and x is acute, find the exact values of a) sin2x b) cos2x c) sin4x 20. Use the formula for sin (x+y) to show that x+y = 45. 1 x y 3 2 Continued on next slide
21. Use the formula for cos (x+y) to show that cos (x+y) = and A is obtuse and B is acute, find the exact values of a) sin2A b) cos(A-B) 22. If sin A = , sin B= , 23. Solve the equation sinxcos33 + cosxsin33 = 0.9 24. Simplify cos225 – sin225 12 25 Solve the equations a) 4sin2x = 5sinx b) cos2x + 6cosx + 5 = 0 26. The diagram shows two right angled triangles. Find the exact value of sin (x+y). 13 4 y x 3 x y 3 3 2