1 / 6

13.1 平行四边形的性质

13.1 平行四边形的性质. 知识回顾: 1. 的四边形是 平行四边形 2. 平行四边形的性质: ① 对边 ; ② 对角 ; 邻角 ; ③ 对角线 ; ④ 对称性. 第 3 题图 第 4 题图 第 5 题图. 3.(10 荆州 ) 如图,在 □ ABCD 中,∠ A =130° ,在 AD 上取 DE = DC ,则∠ ECB 的度数是 .

gates
Download Presentation

13.1 平行四边形的性质

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 13.1平行四边形的性质

  2. 知识回顾: 1.的四边形是平行四边形 2.平行四边形的性质: ①对边; ②对角; 邻角 ; ③对角线; ④ 对称性.

  3. 第3题图 第4题图 第5题图 3.(10 荆州)如图,在□ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是. 4.(10 西宁)如图,在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是. 5. 如图,在□ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为.

  4. 性质应用: 例1.已知:□ABCD中,E、F分别是AD、BC的中点, 求证:BE=DF. 若将例1中的“E、F分别是AD、BC的中点”改为 “AE=1/3AD,CF=1/3BC”,BE与DF相等吗?

  5. 例2. 已知:如图,□ABCD的对角线AC、BD相交于点O,过点O的直线与AD、BC分别相交于点E、F. 求证:OE=OF. 拓展1:S四边形ABEF与S四边形DCEF有何数量关系?并思考:将□ABCD面积等分的直线有什么特征?

  6. 拓展2: 将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积, 则这样的折纸方法有种? 拓展3: 若将例2中的“过点O的直线与AD、BC分别相交于点E、F.”改为“过点O的直线与BA,DC的延长线分别相交于点E,F.”请画出图形并判断OE,OF是否还具有上题的结论? 拓展4: (10 本溪)过□ABCD对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF的长是.

More Related