1 / 13

Использование теоремы Фалеса в современном мире

Использование теоремы Фалеса в современном мире. Баландин Александр Кузьмин Александр. Цели и задачи проекта. Основная цель проекта: Выяснить, чем знаменит Фалес и его теорема. Вопросы учебной темы: Кто ты, Фалес? Почему теорема Фалеса так знаменита?

gary
Download Presentation

Использование теоремы Фалеса в современном мире

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Использование теоремы Фалеса в современном мире Баландин Александр Кузьмин Александр

  2. Цели и задачи проекта Основная цель проекта: Выяснить, чем знаменит Фалес и его теорема. Вопросы учебной темы: Кто ты, Фалес? Почему теорема Фалеса так знаменита? Как теорема Фалеса находит свое применение?

  3. Фалес Милетский • Великий учёный Фалес Милетский основал одну из прекраснейших наук- геометрию. Известно, что Фалес Милетский имел титул одного из семи мудрецов Греции, что он был поистине первым философом, первым математиком, астрономом и вообще первым по всем наукам в Греции. Карьеру он начинал как купец и ещё в молодости попал в Египет. В Египте Фалес застрял на много лет, изучая науки в Фивах и Мемфисе. Считается, что геометрию и астрономию в Грецию привёз он. 624-547г.г. до н.э. Фалеса также является основателем Ионийской школы. Поскольку Фалес жил в Ионии, школа его была названа Ионийской

  4. Сегодня нам трудно сказать, откуда первый древнегреческий философ, ученый и видный политический деятель Фалес Милетский узнал о пропорциональности сторон подобных треугольников: открылась ли эта истина ему самому или ее передали ему египетские жрецы во время его торговых и дипломатических миссий в страну древних пирамид. • Главное, что он умел находить какую-либо неизвестную величину по трем известным на основе пропорции a/b = c/d. Так, измерив длину тени, отбрасываемой предметами, Фалес с помощью этой пропорции нашел высоту египетской пирамиды. Измерение расстояния до корабля, находящегося далеко в море, им производилось тоже на основе этой пропорции.

  5. a/b = c/d. • Любопытно, что Фалес определял высоту египетских пирамид по их тени не только простейшим способом, «дождавшись часа, когда наша тень одной длины с нами» (тогда и длина тени пирамиды равна ее высоте), но и через установление пропорциональных отношений между тремя поддающимися измерению величинами и искомым параметром. В последнем случае высоту пирамиды можно измерить в любое время дня.

  6. a/b = c/d. • Измерение расстояния до корабля, находящегося далеко в море, им производилось тоже на основе этой пропорции. Выбрав на берегу моря базис a и вымерив с крайних его точек углы до корабля, он затем вычерчивал подобный треугольник небольших размеров и измерял у него две стороны, скажем, c и d. После этого ничего не стоило найти неизвестное расстояние до корабля — сторону b. Задачи такого класса и более сложные умели прекрасно решать в Египте (это стало известно из найденных папирусов).

  7. Считается, что Фалес первым доказал несколько геометрических теорем, а именно: 1 3 4 • Теорема Фалеса : • вертикальные углы равны; • треугольники с равной одной стороной и равными углами, прилегающими к ней, равны; • углы при основании равнобедренного треугольника равны; • диаметр делит круг пополам; • угол, вписанный в полуокружность, всегда будет прямым. • если параллельные прямые, пересекающие стороны угла, отсекают на одной стороне его равные отрезки, то они отсекают равные отрезки и на другой его стороне. 2

  8. Задача Решение: • Через точку С проведем прямую, параллельную прямой АВ и обозначим буквой D точку пересечения этой прямой с прямой MN (рис. 2). Так как AM = МВ по условию, а MB = CD как противоположные стороны параллелограмма BCDM, то АМ = DC. Треугольники АМN и CDN равны по второму признаку равенства треугольников (АМ=CD,<1= <2 и <3=<4 как накрест лежащие углы при пересечении параллельных прямых АВ и CD секущими АС и МD), поэтому AN = NC. Через середину М стороны АВ треугольника АВС проведена прямая, параллельная стороне ВС. Эта прямая пересекает сторону АС в точке N. Докажите, что AN = NC.

  9. ТеоремаФалеса Решение:  • Пусть на прямой l1 отложены равные отрезки А1А2, А2А3, А3А4, …и через их концы проведены параллельные прямые, которые пересекают прямую l2 в точках В1, В2, В3, В4, … (рис.1). Требуется доказать, что отрезки В1В2, В2В3, В3В4, … равны друг другу. Докажем, например, что В1В2 = В2В3. • Рассмотрим сначала случай, когда прямые l1 и l2 параллельны (рис. 1, а). тогда А1А2 = В1В2 и А2А3 = В2В3 как противоположные стороны параллелограммов А1В1В2А2 и А2В2В3А3. так как А1А2 = А2А3, то и В1В2 = В2В3 если прямые l1 и l2 не параллельны, то через точку • В1 проведем прямую l, параллельную прямой l1 (рис.1, б). Она пересечет прямые А2В2 и А3В3 в некоторых точках С и D. Так как А1А2 = А2А3, то по доказанному В1С = СD. Отсюда получаем В1В2 = В2В3. Аналогично можно доказать, что В2В3 = В3В4 и т.д. Докажем теоремуФалеса: если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.

  10. Задача Решение: • Проведен луч АХ, не лежащий на прямой АВ, и на нем от точки А отложим последовательно n равных отрезков АА1, А1А2, …, Аn-1Аn (рис.3), т.е. столько равных отрезков, на сколько равных частей нужно разделить данный отрезок АВ (на рис. 3 n=5). Проведем прямую АnВ (точка Аn – конец последнего отрезка) и построим прямые, проходящие через точки А1 , А2 , …, Аn-1 и параллельные прямой АnВ. Эти прямые пересекают отрезок АВ в точках В1 , В2 , …, Вn-1, которые по теореме Фалеса делят отрезок АВ на n равных частей. Разделите данный отрезок АВ на n равных частей.

  11. Задача Решение: • Проведен луч АХ, не лежащий на прямой АВ, и на нем от точки А отложим последовательно 8 равных отрезков АА1, А1А2, …, А7А8 (рис.3), т.е. столько равных отрезков, на сколько равных частей нужно разделить данный отрезок АВ (рис. 4). Проведем прямую А8В (точка А8 – конец последнего отрезка) и построим прямые, проходящие через точки А1 , А2 , …, А7 и параллельные прямой А8В. Эти прямые пересекают отрезок АВ в точках В1 , В2 , …, В7, которые по теореме Фалеса делят отрезок АВ на 8 равных частей. Разделите данный отрезок АВ на 8 равных частей

  12. Решение • Проведём через точку N прямую параллельную AB и обозначим точкой D. BMND – пар-м по определению. MN || BD, MB || ND по построению. <1=<2 как соответственные при MN || BD и секущей MB. <5=<6 как соотвественные при BC || MN и секущей AC. • <2+<3=180 (углы парал-ма) • <3+<4=180 (смежные) => <2=<4 • Рассмотрим тр.MNA и тр.DCN: <6=<5, <1=<4, а <6+<4+<7=180, <5+<1+<A=180, ND=MB(стороны пар-ма), MB=AM(дано), значит ND=AM => тр.MNA = тр.DCN по 2 признаку. <7=<A, <4=<1, ND=AM. • Из равенства треугольников следует, AN-NC.

  13. Решение • Тр.ABC подобен тр.AMN по 1 признаку: <A-общий, <1=<2- соотв углы при MN || BC секущей AB. • Значит: AB:AM=AC:AN=BC:MN • Так как AM=MB то AB=2AM. • 2AM:AM=AC:AN=k AC:AN=2 • AC=2AN => AN= NC

More Related