dc field ir program
Download
Skip this Video
Download Presentation
DC Field IR Program

Loading in 2 Seconds...

play fullscreen
1 / 9

DC Field IR Program - PowerPoint PPT Presentation


  • 104 Views
  • Uploaded on

DC Field IR Program. Zhiqiang (Jason) Li 2014 Users Committee Meeting Tallahassee, FL October 10-11, 2014. Current Capabilities. IR transmission: up to 35T ( cell 8 ) IR reflectance: up to 17.5T (SCM3) F requency range: 10 -6,000 cm -1 (far-IR to mid-IR) Faraday geometry

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'DC Field IR Program' - gareth-patton


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
dc field ir program

DC Field IR Program

Zhiqiang (Jason) Li

2014 Users Committee Meeting

Tallahassee, FL

October 10-11, 2014

slide2
Current Capabilities
  • IR transmission: up to 35T (cell 8)
  • IR reflectance: up to 17.5T (SCM3)
  • Frequency range: 10-6,000 cm-1 (far-IR to mid-IR)
  • Faraday geometry
  • Temperature range: 4.2-8K in SCM3, 4.2K in cell 8
  • Four samples can be loaded in one cool-down in SCM3 (17.5T magnet) for both transmission and reflectance experiments
  • Typical noise-to-signal ratio: lower than 0.1% for both reflectance and transmission. (mm sized samples)

R(w)

IR light

B

sample

T(w)

slide3
IR Program Users

16 user groups since 2011

  • Phaedon Avouris (IBM)
  • Ken Burch (Boston college)
  • SasaDordevic (U. Akron)
  • Tony Heinz (Columbia University)
  • Erik Henriksen (Washington University in St. Louis).
  • ZhigangJiang (Georgia Tech)
  • Zhiqiang Jason Li (NHMFL)
  • Jan Musfeldt (U. Tennessee)
  • Willie Padilla (Boston college)
  • Dmitry Smirnov (NHMFL)
  • Sergey Suchalkin (SUNY)
  • Li-Chun Tung (U. ND)
  • Yuri Vasilyev (Ioffe Institute)
  • Feng Wang (UC Berkeley)
  • XiaodongXu(U. Washington)
  • ChenglinZhang (U. Tennessee)
slide4
Research Areas Explored With IR
  • Graphene
  • Quantum wells
  • Topological insulators
  • Molecular materials
  • Multiferroics
  • 2D transition metal dichalcogenides
  • Iron-based superconductors
  • Transition metal oxides
slide5
IR User Publications since 2012

1 Nature journals

  • Zhi-Guo Chen, Zhiwen Shi, Wei Yang, Xiaobo Lu, You Lai, Hugen Yan, Feng Wang, Guangyu Zhang and Zhiqiang Li, “Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures”, Nature Communications 5, 4461 (2014).  

3 PRLs

  • T. V. Brinzari, J. T. Haraldsen, P. Chen, Q.-C. Sun, Y. Kim, L.-C. Tung, A. P. Litvinchuk, J. A. Schlueter, D. Smirnov, J. L. Manson, J. Singleton, and J. L. Musfeldt, Electron-Phonon and Magnetoelastic Interactions in Ferromagnetic Co[N(CN)2]2, Phys. Rev. Lett. 111, 047202 (2013)
  • J. M. Poumirol, W. Yu, X. Chen, C. Berger, W. A. de Heer, M. L. Smith, T. Ohta, W. Pan, M. O. Goerbig, D. Smirnov, and Z. Jiang, Magnetoplasmons in Quasineutral Epitaxial Graphene Nanoribbons, Phys. Rev. Lett. 110, 246803 (2013)
  • T. V. Brinzari, P. Chen, Q.-C. Sun, J. Liu, L.-C. Tung, Y. Wang, J. A. Schlueter, J. Singleton, J. L. Manson, M.-H. Whangbo, A. P. Litvinchuk, and J. L. Musfeldt, Quantum Critical Transition Amplifies Magnetoelastic Coupling in Mn[N(CN)2]2, Phys. Rev. Lett. 110, 237202 (2013)

1 Nano letters

Hugen Yan, Zhiqiang Li, Xuesong Li, Wenjuan Zhu, Phaedon Avouris, and FengnianXia, Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene, Nano Lett. 12, 3766 (2012).

5 other journals

  • S.V. Dordevic et al, Phys. Status Solidi B 251, 1510 (2014).
  • Ludwig, J. et al, Phys. Rev. B Rapid Commun., 89 (24), 241406 (2014)
  • Greshnov, A.A. et al, JETP Lett., 97 (2), 106 (2013)
  • Hugen Yan et al, New Journal of Physics, 14, 125001 (2012).
  • T. V. Brinzari et al, Phys. Rev. B 86, 214411 (2012)
slide6
Feedback from Users
  • Acquire a new IR spectrometer for SCM 3
  • Build new IR probes for SCM3 and cell 8
  • Noise issues: 60Hz noise
  • Gold coating forabsolute reflectance measurements
  • Polarizer and analyzer
slide8
Future Efforts

Resistive magnets

  • Reflectance measurements in cell 7: up to 31T
  • Gold coating (in situ) --- Absolute reflectance spectra
  • New IR transmission probe in cell 8 (35T)

SCM3

  • Build new reflectance probe
  • Gold coating (in situ) --- Absolute reflectance spectra
  • Improve existing IR transmission probe
  • (Different IR windows, bolometer cool down, etc)
slide9
Future Efforts

Proposed new dedicated IR superconducting magnet 18/20T

  • Reflectance, transmission
  • Gold coating (in situ) --- Absolute reflectance spectra
  • Polarizer and analyzer
  • Kerr rotation, Faraday rotation
  • Anisotropic samples
  • Lower noise
    • Isolated vacuum space for detector
    • Integrate amplifying electronics (JFET) close to the detector
  • Sample temperature: 4.2K—300K
  • Broad frequency range; multiple detectors
ad